2 resultados para CALCIUM-CHANNEL BLOCKER

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.