4 resultados para C:N RATIO
em Greenwich Academic Literature Archive - UK
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
In parallel adaptive finite element simulations the work load on the individual processors may change frequently. To (re)distribute the load evenly over the processors a load balancing heuristic is needed. Common strategies try to minimise subdomain dependencies by optimising the cutsize of the partitioning. However for certain solvers cutsize only plays a minor role, and their convergence is highly dependent on the subdomain shapes. Degenerated subdomain shapes cause them to need significantly more iterations to converge. In this work a new parallel load balancing strategy is introduced which directly addresses the problem of generating and conserving reasonably good subdomain shapes in a dynamically changing Finite Element Simulation. Geometric data is used to formulate several cost functions to rate elements in terms of their suitability to be migrated. The well known diffusive method which calculates the necessary load flow is enhanced by weighting the subdomain edges with the help of these cost functions. The proposed methods have been tested and results are presented.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.