4 resultados para Brane Dynamics in Gauge Theories
em Greenwich Academic Literature Archive - UK
Resumo:
The liquid metal flow in induction crucible models is known to be unstable, turbulent and difficult to predict in the regime of medium frequencies when the electromagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference velocity probe in a cylindrical container filled with eutectic melt In-Ga-Sn. The parallel numerical simulation of the long time scale development of the turbulent average flow is presented. The numerical flow model uses an implicit pseudo-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The results compare reasonably to the experiment and demonstrate the time development of the turbulent flow field and the turbulence energy.
Resumo:
The liquid metal flow in inducation crucible models is known to be higly unstable and turbutlen in the regim e of medium frequecies when the elctronmagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference veolocity probe in a cylindirical container filled with eutecti mlt In-Ga-SN. The parallel numerical simulation of the long time scale development of the turbulen average flow is presented. The numerical lfow model uses a pseud-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The result compare reasonably to the experiment and demonstrate the time development of the turbulent flow field.
Resumo:
Pollen, microscopic charcoal, palaeohydrological and dendrochronological analyses are applied to a radiocarbon and tephrochronologically dated mid Holocene (ca. 8500–3000 cal B.P.) peat sequence with abundant fossil Pinus (pine) wood. The Pinus populations on peat fluctuated considerably over the period in question. Colonisation by Pinus from ca. 7900–7600 cal B.P. appears to have had no specific environmental trigger; it was probably determined by the rate of migration from particular populations. The second phase, at ca. 5000–4400 cal B.P., was facilitated by anthropogenic interference that reduced competition from other trees. The pollen record shows two Pinus declines. The first at ca. 6200–5500 cal B.P. was caused by a series of rapid and frequent climatic shifts. The second, the so-called pine decline, was very gradual (ca. 4200–3300 cal B.P.) at Loch Farlary and may not have been related to climate change as is often supposed. Low intensity but sustained grazing pressures were more important. Throughout the mid Holocene, the frequency and intensity of burning in these open Pinus–Calluna woods were probably highly sensitive to hydrological (climatic) change. Axe marks on several trees are related to the mid to late Bronze Age, i.e., long after the trees had died.
Resumo:
Abstract not available