2 resultados para Boolean Functions, Equivalence Class
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper we discuss the relationship and characterization of stochastic comparability, duality, and Feller–Reuter–Riley transition functions which are closely linked with each other for continuous time Markov chains. A necessary and sufficient condition for two Feller minimal transition functions to be stochastically comparable is given in terms of their density q-matrices only. Moreover, a necessary and sufficient condition under which a transition function is a dual for some stochastically monotone q-function is given in terms of, again, its density q-matrix. Finally, for a class of q-matrices, the necessary and sufficient condition for a transition function to be a Feller–Reuter–Riley transition function is also given.
Resumo:
Social network analysts have tried to capture the idea of social role explicitly by proposing a framework that precisely gives conditions under which group actors are playing equivalent roles. They term these methods positional analysis techniques. The most general definition is regular equivalence which captures the idea that equivalent actors are related in a similar way to equivalent alters. Regular equivalence gives rise to a whole class of partitions on a network. Given a network we have two different computational problems. The first is how to find a particular regular equivalence. An algorithm exists to find the largest regular partition but there are not efficient algorithms to test whether there is a regular k-partition. That is a partition in k groups that is regular. In addition, when dealing with real data, it is unlikely that any regular partitions exist. To overcome this problem relaxations of regular equivalence have been proposed along with optimisation techniques to find nearly regular partitions. In this paper we review the algorithms that have developed to find particular regular equivalences and look at some of the recent theoretical results which give an insight into the complexity of finding regular partitions.