10 resultados para Bois--Transport--Modèles mathématiques
em Greenwich Academic Literature Archive - UK
Resumo:
Very Large Transport Aircraft (VLTA) pose considerable challenges to designers, operators and certification authorities. Questions concerning seating arrangement, nature and design of recreational space, the number, design and location of internal staircases, the number of cabin crew required and the nature of the cabin crew emergency procedures are just some of the issues that need to be addressed. Other more radical concepts such as blended wing body (BWB) design, involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisles be made wider to accommodate more passengers? In this paper we demonstrate how computer based evacuation models can be used to investigate these issues through examination of staircase evacuation procedures for VLTA and aisle/exit configuration for BWB cabin layouts.
Resumo:
The ATTMA "Aerosol Transport in the Trans-Manche Atmosphere" project investigates the transportation and dispersion of air pollutants across the English Channel, in collaboration with local authorities and other Universities in Southern England and Northern France. The research is concerned with both forward and inverse (receptor based) tracking. Two alternative dispersion simulation methods are used: (a) Lagrangian Particle Dispersion (LPD) models, (b) Eulerian Finite Volume type models. This paper is concerned with part (a), the simulations based on LPD models. Two widely applied LPD models are used and compared. Since in many observed episodes the source of pollution is traced outside the region of interest, long range, trans-continental transport is also investigated.
Resumo:
Problems in the preservation of the quality of granular material products are complex and arise from a series of sources during transport and storage. In either designing a new plant or, more likely, analysing problems that give rise to product quality degradation in existing operations, practical measurement and simulation tools and technologies are required to support the process engineer. These technologies are required to help in both identifying the source of such problems and then designing them out. As part of a major research programme on quality in particulate manufacturing computational models have been developed for segregation in silos, degradation in pneumatic conveyors, and the development of caking during storage, which use where possible, micro-mechanical relationships to characterize the behaviour of granular materials. The objective of the work presented here is to demonstrate the use of these computational models of unit processes involved in the analysis of large-scale processes involving the handling of granular materials. This paper presents a set of simulations of a complete large-scale granular materials handling operation, involving the discharge of the materials from a silo, its transport through a dilute-phase pneumatic conveyor, and the material storage in a big bag under varying environmental temperature and humidity conditions. Conclusions are drawn on the capability of the computational models to represent key granular processes, including particle size segregation, degradation, and moisture migration caking.
Resumo:
The Sahara desert is a significant source of particulate pollution not only to the Mediterranean region, but also to the Atlantic and beyond. In this paper, PM 10 exceedences recorded in the UK and the island of Crete are studied and their source investigated, using Lagrangian Particle Dispersion (LPD) methods. Forward and inverse simulations identify Saharan dust storms as the primary source of these episodes. The methodology used allows comparison between this primary source and other possible candidates, for example large forest fires or volcanic eruptions. Two LPD models are used in the simulations, namely the open source code FLEXPART and the proprietary code HYSPLIT. Driven by the same meteorological fields (the ECMWF MARS archive and the PSU/NCAR Mesoscale model, known as MM5) the codes produce similar, but not identical predictions. This inter-model comparison enables a critical assessment of the physical modelling assumptions employed in each code, plus the influence of boundary conditions and solution grid density. The outputs, in the form of particle concentrations evolving in time, are compared against satellite images and receptor data from multiple ground-based sites. Quantitative comparisons are good, especially in predicting the time of arrival of the dust plume in a particular location.
Resumo:
In this paper an introduction is given to the history, current situation and future plans of China's railway industry. The history of China's railway is divided into four development phases: the phase in Imperial China, the phase in the Republic of China and the phases before and after the economic rejuvenation of the People's Republic of China. An introduction to the current situation and future plans includes the major projects under construction and development trends of China's railways. The environment of China's railways is also presented. This is the first of two papers on the railway scene in China.
Resumo:
In this paper, an introduction is provided to some of the components of China's transport system. The authors include the urban rail transit systems, the highway transport systems and its competition for China's railways and the reform of China's railway industry. This is the second of two papers on the situation of rail transport in China.
Resumo:
Water uptake and water loss have been studied in a commercial resin-modified glass-ionomer cement, Fuji II LC, under a variety of conditions. Uptake was generally non-Fickian, but affected by temperature. At room temperature, the equilibrium water uptake values varied from 2.47 to 2.78% whereas at low temperature (12 degrees C), it varied from 0.85 to 1.18%. Cure time affected uptake values significantly. Water uptake was much lower than in conventional glass-ionomer restorative cements exposed to water vapor. Loss of water under desiccating conditions was found to be Fickian for the first 5 h loss at both 22 and 12 degrees C. Diffusion coefficients were between 0.45 and 0.76 x 10( -7) cm(2)/s, with low temperature diffusion coefficients slightly greater than those at room temperature. Plotting water loss as percentage versus s(-(1/2)) allowed activation energies to be determined from the Arrhenius equation and these were found to be 65.6, 79.8, and 7.7 kJ/mol respectively for 30, 20, and 10 s cure times. The overall conclusion is that the main advantage of incorporating HEMA into resin-modified-glass-ionomers is to alter water loss behavior. Rate of water loss and total amount lost are both reduced. Hence, resin-modified glass-ionomers are less sensitive to water loss than conventional glass-ionomers.
Resumo:
Public transport plays an essential role in enabling people from low income and other disadvantaged groups to access employment and services. It also contributes to the development of social networks and social capital, by helping people to visit friends and relatives and take part in community and other social activities. Public policy makers have begun to recognise that adequate public transport provision can play an important role in reducing social exclusion. [Taken from introductory paragraph.]