3 resultados para Blood Alcohol Test Equipment.

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To study the impact of powder flow properties on dosator filling systems, with particular focus on improvements in dose weight accuracy and repeatability. Method: This study evaluates a range of critical powder flow properties such as: flow function, cohesion, wall friction, adhesion to wall surfaces, density/compressibility data, stress ratio “K” and gas permeability. The characterisations of the powders considered in this study were undertaken using an annular shear cell using a sample size of 0.5 litres. This tester also incorporated the facility to measure bed expansion during shear in addition to contraction under consolidation forces. A modified Jenike type linear wall friction tester was used to develop the failure loci for the powder sample in conjunction with multiple wall samples (representing a variety of material types and surface finishes). Measurements of the ratio of applied normal stress versus lateral stress were determined using a piece of test equipment specifically designed for the purpose. Results: The correct characterisation of powders and the incorporation of this data into the design of process equipment are recognised as critical for reliable and accurate operation. An example of one aspect of this work is the stress ratio “K”. This characteristic is not well understood or correctly interpreted in many cases – despite its importance. Fig 1 [Omitted] (illustrates a sample of test data. The slope of the line gives the stress ratio in a uniaxial compaction system – indicating the behaviour of the material under compaction during dosing processes. Conclusions: A correct assessment of the bulk powder properties for a given formulation can allow prediction of: cavity filling behaviour (and hence dosage), efficiency of release from dosator, and strength and stability of extruded dose en route to capsule filling Influences over the effectiveness of dosator systems have been shown to be impacted upon by: bed pre-compaction history, gas permeability in the bed (with respect to local density effects), and friction effects for materials of construction for dosators

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented.