1 resultado para Benthocosm F1
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (9)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (14)
- Bibloteca do Senado Federal do Brasil (126)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (86)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (29)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (6)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (15)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (12)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (62)
- Publishing Network for Geoscientific & Environmental Data (68)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (22)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositorio Institucional de la Universidad Nacional Agraria (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (254)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (8)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (9)
- Universidade Federal do Rio Grande do Norte (UFRN) (23)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (3)
- University of Michigan (26)
- University of Queensland eSpace - Australia (8)
- University of Washington (2)
Resumo:
Given M(r; f) =maxjzj=r (jf(z)j) , curves belonging to the set of points M = fz : jf(z)j = M(jzj; f)g were de�ned by Hardy to be maximum curves. Clunie asked the question as to whether the set M could also contain isolated points. This paper shows that maximum curves consist of analytic arcs and determines a necessary condition for such curves to intersect. Given two entire functions f1(z) and f2(z), if the maximum curve of f1(z) is the real axis, conditions are found so that the real axis is also a maximum curve for the product function f1(z)f2(z). By means of these results an entire function of in�nite order is constructed for which the set M has an in�nite number of isolated points. A polynomial is also constructed with an isolated point.