3 resultados para Bending behaviour
em Greenwich Academic Literature Archive - UK
Resumo:
Flip chip interconnections using anisotropic conductive film (ACF) are now a very attractive technique for electronic packaging assembly. Although ACF is environmentally friendly, many factors may influence the reliability of the final ACF joint. External mechanical loading is one of these factors. Finite element analysis (FEA) was carried out to understand the effect of mechanical loading on the ACF joint. A 3-dimensional model of adhesively bonded flip chip assembly was built and simulations were performed for the 3-point bending test. The results show that the stress at its highest value at the corners, where the chip and ACF were connected together. The ACF thickness was increased at these corner regions. It was found that higher mechanical loading results in higher stress that causes a greater gap between the chip and the substrate at the corner position. Experimental work was also carried out to study the electrical reliability of the ACF joint with the applied bending load. As per the prediction from FEA, it was found that at first the corner joint failed. Successive open joints from the corner towards the middle were also noticed with the increase of the applied load.
Resumo:
A rigid wall model has been used widely in the numerical simulation of rail vehicle impacts. Finite element impact modelling of rail vehicles is generally based on a half-width and full-length or half-length structure, depending on the symmetry. The structure and components of rail vehicles are normally designed to cope with proof loading to ensure adequate ride performance. In this paper, the authors present a study of a rail vehicle with driving cab focused on improving the modelling approach and exploring the intrinsic structural weaknesses to enhance its crashworthiness. The underpinning research used finite element analysis and compared the behaviour of the rail vehicle in different impact scenarios. It was found that the simulation of a rigid wall impact can mask structural weaknesses; that even a completely symmetrical impact may lead to an asymmetrical result; that downward bending is an intrinsic weakness of conventional rail vehicles and that a rigid part of the vehicle structure, such as the body bolster, may cause uncoordinated deformation and shear fracture between the vehicle sections. These findings have significance for impact simulation, the full-scale testing of rail vehicles and rail vehicle design in general.
Resumo:
Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.