6 resultados para BOUNDARY ALIGNMENT
em Greenwich Academic Literature Archive - UK
Resumo:
A monotone scheme for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number is presented. The numerical stability is analysed with respect to the electromagnetic force. Standard central finite differences applied to finite volumes can only be numerically stable if the vector products involved in this force are computed with a scheme using a fully staggered grid. The electromagnetic quantities (electric currents and electric potential) must be shifted by half the grid size from the mechanical ones (velocity and pressure). An integral treatment of the boundary layers is used in conjunction with boundary conditions for electrically conducting walls. The simulations are performed with inhomogeneous electrical conductivities of the walls and reach high Hartmann numbers in three-dimensional simulations, even though a non-adaptive grid is used.
Resumo:
Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.
Resumo:
The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
The spillway of Lake Waxahachie, Ellis County (Texas), exposes a > 17 m section of the Hutchins Member of the Austin Chalk Group, un-conformably overlain by Taylor Clay. The Austin sequence was regarded as a potential Global Stratotype Section for the base of the Campanian Stage at the 1995 Brussels meeting on Cretaceous Stage boundaries, with the last occurrence of the crinoid Marsupites testudinarius (von Schlotheim, 1820) as the potential boundary marker. An integrated study of the geochemistry, stable carbon and oxgen isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids of this section place the last occurrence of M. testudinarius in a matrix of eighteen ancillary biostratigraphic markers, while the boundary can also be recognised on the basis of a delta C-13 excursion that can, in principle, be detected globally in marine sediments. A new forma of the crinoid Marsupites testudinarius is introduced. The Waxahachie section fulfils sufficient geological criteria as to be an excellent candidate GSSP for the base of the Campanian Stage, if problems of ownership and access to the section can be resolved.