2 resultados para BIM, LCA, Building Information Modelling, Life Cycle Assessment

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Western manufacturing companies are developing innovative ways of delivering value that competes with the low cost paradigm. One such strategy is to deliver not only products, but systems that are closely aligned with the customer value proposition. These systems are comprised of integrated products and services, and are referred to as Product-Service Systems (PSS). A key challenge in PSS is supporting the design activity. In one sense, PSS design is a further extension of concurrent engineering that requires front-end input from the additional downstream sources of product service and maintenance. However, simply developing products and service packages is not sufficient: the new design challenge is the integrated system. This paper describes the development of a PSS data structure that can support this integrated design activity. The data structure is implemented in a knowledge base using the Protégé knowledge base editor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future of many companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Important questions for an engineer who is responsible for the quality of electronic parts such as printed circuit boards (PCBs) during design, production, assembly and after-sales support are: What is the impact of temperature? What is the impact of this temperature on the stress produced in the components? What is the electromagnetic compatibility (EMC) associated with such a design? At present, thermal, stress and EMC calculations are undertaken using different software tools that each require model build and meshing. This leads to a large investment in time, and hence cost, to undertake each of these simulations. This paper discusses the progression towards a fully integrated software environment, based on a common data model and user interface, having the capability to predict temperature, stress and EMC fields in a coupled manner. Such a modelling environment used early within the design stage of an electronic product will provide engineers with fast solutions to questions regarding thermal, stress and EMC issues. The paper concentrates on recent developments in creating such an integrated modeling environment with preliminary results from the analyses conducted. Further research into the thermal and stress related aspects of the paper is being conducted under a nationally funded project, while their application in reliability prediction will be addressed in a new European project called PROFIT.