2 resultados para August, prince of Saxe-Coburg-Gotha, 1845-
em Greenwich Academic Literature Archive - UK
Resumo:
Unstructured mesh based codes for the modelling of continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Such codes have the potential to provide a high performance on parallel platforms for a small investment in programming. The critical parameters for success are to minimise changes to the code to allow for maintenance while providing high parallel efficiency, scalability to large numbers of processors and portability to a wide range of platforms. The paradigm of domain decomposition with message passing has for some time been demonstrated to provide a high level of efficiency, scalability and portability across shared and distributed memory systems without the need to re-author the code into a new language. This paper addresses these issues in the parallelisation of a complex three dimensional unstructured mesh Finite Volume multiphysics code and discusses the implications of automating the parallelisation process.
Resumo:
It is now clear that the concept of a HPC compiler which automatically produces highly efficient parallel implementations is a pipe-dream. Another route is to recognise from the outset that user information is required and to develop tools that embed user interaction in the transformation of code from scalar to parallel form, and then use conventional compilers with a set of communication calls. This represents the key idea underlying the development of the CAPTools software environment. The initial version of CAPTools is focused upon single block structured mesh computational mechanics codes. The capability for unstructured mesh codes is under test now and block structured meshes will be included next. The parallelisation process can be completed rapidly for modest codes and the parallel performance approaches that which is delivered by hand parallelisations.