14 resultados para Application of graphical meshes

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-Newton methods are applied to solve interface problems which arise from domain decomposition methods. These interface problems are usually sparse systems of linear or nonlinear equations. We are interested in applying these methods to systems of linear equations where we are not able or willing to calculate the Jacobian matrices as well as to systems of nonlinear equations resulting from nonlinear elliptic problems in the context of domain decomposition. Suitability for parallel implementation of these algorithms on coarse-grained parallel computers is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the use of free-surface techniques, within the framework of a finite volume methodology, are investigated for the simulation of metal forming processes. In such processes, for example extrusion and forging, a workpiece is subjected to large scale deformation to create the product's shape. The use of Eulerian free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remmeshing. Two free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remesingh. Two free-surface techniques are compared by modelling a typical example of this type of process - non-Newtonian extrusion of an aluminium workpiece through a conical die.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisation of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models used in pperforming fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most lead bullion is refined by pyrometallurgical methods - this involves a serics of processes that remove the antimony (softening) silver (Parkes process), zinc (vacuum dezincing) and if need be, bismuth (Betterton-Kroll process). The first step, softening, removes the antimony, arsenic and tin by air oxidation in a furnace or by the Harris process. Next, in the Parkes process, zinc is added to the melt to remove the silver and gold. Insoluble zinc, silver and gold compounds are skimmed off from the melt surface. Excess zinc added during desilvering is removed from lead bullion using one of ghree methods: * Vacuum dezincing; * Chlorine dezincing; or * Harris dezincing. The present study concentrates on the Vacuum dezincing process for lead refining. The main aims of the research are to develop mathematical model(s), using Computational Fluid Dyanmics (CFD) a Surface Averaged Model (SAM), to predict the process behaviour under various operating conditions, thus providing detailed information of the process - insight into its reaction to changes of key operating parameters. Finally, the model will be used to optimise the process in terms of initial feed concentration, temperature, vacuum height cooling rate, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems in the preservation of the quality of granular material products are complex and arise from a series of sources during transport and storage. In either designing a new plant or, more likely, analysing problems that give rise to product quality degradation in existing operations, practical measurement and simulation tools and technologies are required to support the process engineer. These technologies are required to help in both identifying the source of such problems and then designing them out. As part of a major research programme on quality in particulate manufacturing computational models have been developed for segregation in silos, degradation in pneumatic conveyors, and the development of caking during storage, which use where possible, micro-mechanical relationships to characterize the behaviour of granular materials. The objective of the work presented here is to demonstrate the use of these computational models of unit processes involved in the analysis of large-scale processes involving the handling of granular materials. This paper presents a set of simulations of a complete large-scale granular materials handling operation, involving the discharge of the materials from a silo, its transport through a dilute-phase pneumatic conveyor, and the material storage in a big bag under varying environmental temperature and humidity conditions. Conclusions are drawn on the capability of the computational models to represent key granular processes, including particle size segregation, degradation, and moisture migration caking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL heuristic, termed the combined node-exchange composite heuristic (CNCH), is developed first to solve instances of the VRP. A ML version (the ML-CNCH) is then created, using the construction and improvement heuristics of the CNCH at each level. Experimentation is used to find a suitable combination, which extends the global view of these heuristics. Results comparing both SL and ML are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growth in computing power, and advances in numerical methods for the solution of partial differential equations, modeling technologies based around computational fluid dynamics, finite element analysis and optimisation are now being widely used by researchers and industry. Polymer and adhesive materials are now being widely used in electronic and photonic devices. This paper will illustrate the use of modeling tools to predict the behaviour of these materials from product assembly to its performance and reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-section variable frequency microwave systems enable rapid, controllable heating of materials within an individual surface mount component in a chip-on=board assembly. The ability to process devices individually allows components with disparate processing requirements to be mounted on the same assembly. The temperature profile induced by the microwave system can be specifically tailored to the needs of the component, allowing optimisation and degree of cure whilst minimising thermomechanical stresses. This paper presents a review of dual-section microwave technology and its application to curing of thermosetting polymer materials in microelectronics applications. Curing processes using both conventional and microwave technologies are assessed and compared. Results indicate that dual-section microwave systems are able to cure individual surface mount packages in a significantly shorter time, at the expense of an increase in thermomechanical stresses and a greater variation in degree of cure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO2 as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1: 1. The concentrations of mercury and other heavy metals in the leachates were below 0.10 mg/L and 5 mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na2CO3 and CO2 may practically apply to cement-based s/s of heavy metal-bearing sediment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A particle swarm optimisation approach is used to determine the accuracy and experimental relevance of six disparate cure kinetics models. The cure processes of two commercially available thermosetting polymer materials utilised in microelectronics manufacturing applications have been studied using a differential scanning calorimetry system. Numerical models have been fitted to the experimental data using a particle swarm optimisation algorithm which enables the ultimate accuracy of each of the models to be determined. The particle swarm optimisation approach to model fitting proves to be relatively rapid and effective in determining the optimal coefficient set for the cure kinetics models. Results indicate that the singlestep autocatalytic model is able to represent the curing process more accurately than more complex model, with ultimate accuracy likely to be limited by inaccuracies in the processing of the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach for detecting local damage in large scale frame structures by utilizing regularization methods for ill-posed problems. A direct relationship between the change in stiffness caused by local damage and the measured modal data for the damaged structure is developed, based on the perturbation method for structural dynamic systems. Thus, the measured incomplete modal data can be directly adopted in damage identification without requiring model reduction techniques, and common regularization methods could be effectively employed to solve the developed equations. Damage indicators are appropriately chosen to reflect both the location and severity of local damage in individual components of frame structures such as in brace members and at beam-column joints. The Truncated Singular Value Decomposition solution incorporating the Generalized Cross Validation method is introduced to evaluate the damage indicators for the cases when realistic errors exist in modal data measurements. Results for a 16-story building model structure show that structural damage can be correctly identified at detailed level using only limited information on the measured noisy modal data for the damaged structure.