4 resultados para Antimicrobial screening

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P.aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P.aeruginosa, two common pathogens in biomaterial-centred infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag+- and Zn2+-exchanged zeolites zeolites and clays have been used as coatings and in composites to confer broad-spectrum antimicrobial properties on a range of technical and biomedical materials. 11 angstrom tobermorite is a bioactive layer lattice ion exchanger whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial formulations has not yet been explored. In view of this, batch Ag+- and Zn2+-exchange kinetics of two structurally distinct synthetic 11 angstrom tobermorites and their subsequent bactericidal action against Staphylococcus aureus and Pseudomonas aeruginosa are reported. During the exchange reactions, Ag+ ions were found to replace labile interlayer cations; whereas, Zn2+ ions also displaced structural Ca2+ ions from the tobermorite lattice. In spite of these different mechanisms, a simple pseudo-second-order model provided a suitable description of both exchange processes (R-2 >= 0.996). The Ag+- and Zn2+-exchanged tobermorite phases exhibited marked bacteriostatic effects against both bacteria, and accordingly, their potential for use as antimicrobial materials for in situ bone tissue regeneration is discussed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many factors in mucosal secretions that contribute to innate immunity and the 'first line of defence' at mucosal surfaces. Few studies, however, have investigated the effects of exercise on many of these 'defence' factors. The aim of the present study was to determine the acute effects of prolonged exercise on salivary levels of selected antimicrobial peptides (AMP) that have not yet been studied in response to exercise (HNP1-3 and LL-37) in addition to immunoglobulin A (IgA). A secondary objective was to assess the effects of exercise on saliva antibacterial capacity. Twelve active men exercised on a cycle ergometer for 2.5 h at approximately 60% of maximal oxygen uptake. Unstimulated whole saliva samples were obtained before and after exercise. There was a significant decrease (P < 0.05) in salivary IgA:osmolality ratio, following exercise, but IgA concentration and secretion rate were unaltered. Salivary HNP1-3 and LL-37 concentrations (P < 0.01 and P < 0.05, respectively), concentration:osmolality ratios (P < 0.01) and secretion rates (P < 0.01) all increased following exercise. Salivary antibacterial capacity (against E. coli) did not change. The increased concentration of AMPs in saliva may confer some benefit to the 'first line of defence' and could result from synergistic compensation within the mucosal immune system and/or airway inflammation and epithelial damage. Further study is required to determine the significance of such changes on the overall 'defence' capacity of saliva and how this influences the overall risk for infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we assessed the effects of exercise intensity on salivary immunoglobulin A (s-IgA) and salivary lysozyme (s-Lys) and examined how these responses were associated with salivary markers of adrenal activation. Using a randomized design, 10 healthy active men participated in three experimental cycling trials: 50% maximal oxygen uptake (VO2max), 75%VO2max, and an incremental test to exhaustion. The durations of the trials were the same as for a preliminary incremental test to exhaustion (22.3 min, sx = 0.8). Timed, unstimulated saliva samples were collected before exercise, immediately after exercise, and 1 h after exercise. In the incremental exhaustion trial, the secretion rates of both s-IgA and s-Lys were increased. An increase in s-Lys secretion rate was also observed at 75%VO2max. No significant changes in saliva flow rate were observed in any trial. Cycling at 75%VOmax and to exhaustion increased the secretion of alpha-amylase and chromogranin A immediately after exercise; higher cortisol values at 75%VO2max and in the incremental exhaustion trial compared with 50%VO2max were observed 1 h immediately after exercise only. These findings suggest that short-duration, high-intensity exercise increases the secretion rate of s-IgA and s-Lys despite no change in the saliva flow rate. These effects appear to be associated with changes in sympathetic activity and not the hypothalamic - pituitary - adrenal axis.