8 resultados para Angle of rotation
em Greenwich Academic Literature Archive - UK
Resumo:
Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called Visibility Catchment Area (VCA). This paper attempts to factor into the determination of the VCA of signs, the observation angle of the observer using both experimental and theoretical analysis.
Resumo:
Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called visibility catchment area (VCA). This study attempts to factor into the determination of the VCA of signs, the observation angle of the observer. In building regulations, it is implicitly assumed that the VCA is independent of the observation angle. A theoretical model is developed to explain the relationship between the VCA and observation angle and experimental trials are performed in order to assess the validity of this model. The experimental findings demonstrate a consistency with the theoretical model. Given this result, the functionality of a comprehensive evacuation model is extended in accordance with the assumptions on which the theoretical model is based and is then demonstrated using several examples
Resumo:
The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.
Resumo:
This paper presents a continuum model of the flow of granular material during filling of a silo, using a viscoplastic constitutive relation based on the Drucker-Prager plasticity yield function. The performed simulations demonstrate the ability of the model to realistically represent complex features of granular flows during filling processes, such as heap formation and non-zero inclination angle of the bulk material-air interface. In addition, micro-mechanical parametrizations which account for particle size segregation are incorporated into the model. It is found that numerical predictions of segregation phenomena during filling of a binary granular mixture agree well with experimental results. Further numerical tests indicate the capability of the model to cope successfully with complex operations involving granular mixtures.
Resumo:
A continuum model of the flow of granular material during silo filling using a viscoplastic constitutive relation is presented in this paper. The constitutive model is based on the Drucker-Prager plasticity yield function. The simulation results give a realistic representation of complex features of granular flows during filling processes, such as heap formation and non-zero inclination angle of the material-air interface. The model is also coupled within the same framework with novel micro-mechanical parametrisations and the process of segregation during filling of granular mixtures can also be modelled.
Resumo:
Purpose: To develop an improved mathematical model for the prediction of dose accuracy of Dosators - based upon the geometry of the machine in conjunction with measured flow properties of the powder. Methods: A mathematical model has been created, based on a analytical method of differential slices - incorporating measured flow properties. The key flow properties of interest in this investigation were: flow function, effective angle of wall friction, wall adhesion, bulk density, stress ratio K and permeability. To simulate the real process and (very importantly) validate the model, a Dosator test-rig has been used to measure the forces acting on the Dosator during the filling stage, the force required to eject the dose and the dose weight. Results: Preliminary results were obtained from the Dosator test-rig. Figure 1 [Omitted] shows the dose weight for different depths to the bottom of the powder bed at the end of the stroke and different levels of pre-compaction of the powder bed. A strong influence over dose weight arising from the proximity between the Dosator and the bottom of the powder bed at the end of the stroke and the conditions of the powder bed has been established. Conclusions: The model will provide a useful tool to predict dosing accuracy and, thus, optimise the future design of Dosator based equipment technology – based on measured bulk properties of the powder to be handled. Another important factor (with a significant influence) on Dosator processes, is the condition of the powder bed and the clearance between the Dosator and the bottom of the powder bed.
Resumo:
The gas-blast and centrifugal-accelerator testers are the two most commonly used erosion testers. An experimental and analytical study was made of the effect of particle characteristics (size, shape and concentration) on particle dynamics in each of these testers. Analysis showed that in the gas-blast tester both particle velocity and the dispersion angle of the particle jet were relatively sensitive to the particle characteristics. Particle characteristics, within the ranges studied, had little influence in the centrifugal accelerator tester. Consequently, during an erosion test, the range of particle velocities and dispersion angles in the gas-blast tester ismuch wider than in the centrifugal-accelerator tester. It was concluded that the centrifugal-accelerator tester gave closer control of the important erosion test parameters and therefore more consistent erosion test measurements. However, one drawback of the centrifugal-accelerator tester is the need to account for erosion effects associated with the impact of rotating particles, an inherent feature of this tester.
Resumo:
The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.