3 resultados para Amon
em Greenwich Academic Literature Archive - UK
Resumo:
The future success of many electronics companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Earlier papers have discussed the benefits of an integrated analysis environment for system-level thermal, stress and EMC prediction. This paper focuses on developments made to the stress analysis module and presents results obtained for an SMT resistor. Lifetime predictions are made using the Coffin-Manson equation. Comparison with the creep strain energy based models of Darveaux (1997) shows the shear strain based method to underestimate the solder joint life. Conclusions are also made about the capabilities of both approaches to predict the qualitative and quantitative impact of design changes.
Resumo:
For sensitive optoelectronic components, traditional soldering techniques cannot be used because of their inherent sensitivity to thermal stresses. One such component is the Optoelectronic Butterfly Package which houses a laser diode chip aligned to a fibre-optic cable. Even sub-micron misalignment of the fibre optic and laser diode chip can significantly reduce the performance of the device. The high cost of each unit requires that the number of damaged components, via the laser soldering process, are kept to a minimum. Mathematical modelling is undertaken to better understand the laser soldering process and to optimize operational parameters such as solder paste volume, copper pad dimensions, laser solder times for each joint, laser intensity and absorption coefficient. Validation of the model against experimental data will be completed, and will lead to an optimization of the assembly process, through an iterative modelling cycle. This will ultimately reduce costs, improve the process development time and increase consistency in the laser soldering process.
Resumo:
The curing of conductive adhesives and underfills can save considerable time and offer cost benefits for the microsystems and electronics packaging industry. In contrast to conventional ovens, curing by microwave energy generates heat internally within each individual component of an assembly. The rate at which heat is generated is different for each of the components and depends on the material properties as well as the oven power and frequency. This leads to a very complex and transient thermal state, which is extremely difficult to measure experimentally. Conductive adhesives need to be raised to a minimum temperature to initiate the cross-linking of the resin polymers, whilst some advanced packaging materials currently under investigation impose a maximum temperature constraint to avoid damage. Thermal imagery equipment integrated with the microwave oven can offer some information on the thermal state but such data is based on the surface temperatures. This paper describes computational models that can simulate the internal temperatures within each component of an assembly including the critical region between the chip and substrate. The results obtained demonstrate that due to the small mass of adhesive used in the joints, the temperatures reached are highly dependent on the material properties of the adjacent chip and substrate.