4 resultados para Aluminium in Cochin estuary
em Greenwich Academic Literature Archive - UK
Resumo:
The waves in commercial cells for electrolytic aluminium production originate at the interface between the liquid aluminium and electrolyte, but their effect can spread into the surrounding busbar network as electric current perturbation, and the total magnetic field acquires a time dependent component. The presented model for the wave development accounts for the nonuniform electric current distribution at the cathode and the whole network of the surrounding busbars. The magnetic field is computed for the continuous current in the fluid zones, all busbars and the ferromagnetic construction elements. When the electric current and the associated magnetic field are computed according to the actual electrical circuit and updated for all times, the instability growth rate is significantly affected. The presented numerical model for the wave and electromagnetic interaction demonstrates how different physical coupling factors are affecting the wave development in the electrolysis cells. These small amplitude self-sustained interface oscillations are damped in the presence of intense turbulent viscosity created by the horizontal circulation velocity field. Additionally, the horizontal circulation vortices create a pressure gradient contributing to the deformation of the interface. Instructive examples for the 500 kA demonstration cell are presented.
Resumo:
In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.
Resumo:
Understanding the dynamics of fine sediment transport across the upper intertidal zone is critical in managing the erosion and accretion of intertidal areas, and in managed realignment/estuarine habitat recreation strategies. This paper examines the transfer of sediments between salt marsh and mudflat environments in two contrasting macrotidal estuaries: the Seine (France) and the Medway (UK), using data collected during two joint field seasons undertaken by the Anglo-French RIMEW project (Rives-Manche Estuary Watch). High-resolution ADCP, Altimeter, OBS and ASM measurements from mudflat and marsh surface environments have been combined with sediment trap data to examine short-term sediment transport processes under spring tide and storm flow conditions. In addition, the longer-term accumulation of sediment in each salt marsh system has been examined via radiometric dating of sediment cores. In the Seine, rapid sediment accumulation and expansion of salt marsh areas, and subsequent loss of open intertidal mudflats, is a major problem, and the data collected here indicate a distinct net landward flux of sediments into the marsh interior. Suspended sediment fluxes are much higher than in the Medway estuary (averaging 0.09 g/m(3)/s), and vertical accumulation rates at the salt marsh/mudflat boundary exceed 3 cm/y. Suspended sediment data collected during storm surge conditions indicate that significant in-wash of fine sediments into the marsh interior can occur during (and following) these high-magnitude events. In contrast to the Seine, the Medway is undergoing erosion and general loss of salt marsh areas. Suspended sediment fluxes are of the order of 0.03 g/m(3)/s, and the marsh system here has much lower rates of vertical accretion (sediment accumulation rates are ca. 4 mm/y). Current velocity data for the Medway site indicate higher velocities on the ebb tide than occur on the flood tide, which may be sufficient to remobilise sediments deposited on the previous tide and so force net removal of material from the marsh.