6 resultados para Airplane crash survival.
em Greenwich Academic Literature Archive - UK
Resumo:
Full-scale furnished cabin fires have been studied experimentally for the purpose of characterising the post-crash cabin fire environment by the US Federal Aviation Administration for many years. In this paper the Computational Fluid Dynamics fire field model SMARTFIRE is used to simulate one of these fires conducted in the C-133 test facility in order to provide further validation of the computational approach and the SMARTFIRE software. The experiment involves exposing the interior cabin materials to an external fuel fire, opening only one exit at the far end of the cabin (the same side as the rupture) for ventilation, and noting the subsequent spread of the external fire to the cabin interior and the onset of flashover at approximately 210 seconds. Through this analysis, the software is shown to be in good agreement with the experimental data, producing reasonable agreement with the fire dynamics prior to flashover and producing a reasonable prediction of the flashover time i.e. 225 seconds. The paper then proceeds to utilize the model to examine the impact on flashover time of the extent of cabin furnishings and cabin ventilation provided by available exits
Resumo:
In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design
Resumo:
The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.
Resumo:
This paper presents a comparison of impact dynamic performance between articulated trains and non-articulated trains. This is carried out by investigation of the characteristics of the two trains types and analysis of their effects on impact dynamics. The analysis shows that the differences in bogie support positions on the carbody and coupling devices lead to differences in several structural and compositional characteristics. These characteristics result in different impact responses for the two types of train and are directly related to their impact stablity. Articulated trains have stiff connection and integral performance in collisions but with less capability for absorbing impact energy between carriages, whereas non-articulated trains show loose connection and scattered performance in collisions but with more options for energy absorber installation between carriages.
Resumo:
Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages.
Resumo:
In advanced non-small cell lung cancer (NSCLC) platinum based chemotherapy with second generation drugs improves median survival (MS) to 8 months and 29% and 10% at 1 and 2 years. Platinum with a third generation drug can improve survival further (BMJ 1995;311: 899) (Spiro et al. Thorax 2004;59:828 Big Lung Trial; N Engl J Med 2003;346:92 ECOG study). NICE now recommends chemotherapy with platinum and a third generation drug for inoperable NSCLC as the first treatment modality. Methods: We audited survival of 176/461 consecutive patients referred for at least 3 courses of platinum and either gemcitabine or vinorelbine from July 2001 to December 2005. Minimal follow up 17 months. Chemotherapy was given on site. Radical radiotherapy for stage IIIA, palliative radiotherapy and second line drugs were given as felt appropriate. Results: 64% were male. 30 (17%) were <55 years ; 66 (37.5%) age 55–65 years; 63 (35.8%) aged 66–75 and 16 (9.1%) >75 years. 5 (2.8%) were stage II; 46 (26%) stage IIIA; 68 (38%) stage IIIB and 55 (30.8%) stage IV. 68 (38%) had 0– 2 courses; 63 (36%) 3 courses and 44 (25%) had 4 or more.