27 resultados para Aircraft accidents.
em Greenwich Academic Literature Archive - UK
Resumo:
The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of passenger accounts from survivable aviation accidents/incidents compiled from interview data collected by agencies such as the US NTSB. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It also plays a significant role in the development of the airEXODUS aircraft evacuation model, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes the latest version of the database (Version 4.0) and includes some analysis of passenger behavior during actual accidents/incidents.
Resumo:
This report concerns the development of the AASK V4.0 database (CAA Project 560/SRG/R+AD). AASK is the Aircraft Accident Statistics and Knowledge database, which is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from interviews of the occupants involved in aircraft accidents. The AASK database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. With support from the UK CAA (Project 277/SRG/R&AD), AASK V3.0 was developed. This was an on-line prototype system available over the internet to selected users and included a significantly increased number of passenger accounts compared with earlier versions, the introduction of cabin crew accounts, the introduction of fatality information and improved functionality through the seat plan viewer utility. The most recently completed AASK project (Project 560/SRG/R+AD) involved four main components: a) analysis of the data collected in V3.0; b) continued collection and entry of data into AASK; c) maintenance and functional development of the AASK database; and d) user feedback survey. All four components have been pursued and completed in this two-year project. The current version developed in the last year of the project is referred to as AASK V4.0. This report provides summaries of the work done and the results obtained in relation to the project deliverables.
Resumo:
The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes recent developments with the database leading to the development of AASK v3.0. These include significantly increasing the number of passenger accounts in the database, the introduction of cabin crew accounts, the introduction of fatality information, improved functionality through the seat plan viewer utility and improved ease of access to the database via the internet. In addition, the paper demonstrates the use of the database by investigating a number of important issues associated with aircraft evacuation. These include issues associated with social bonding and evacuation, the relationship between the number of crew and evacuation efficiency, frequency of exit/slide failures in accidents and exploring possible relationships between seating location and chances of survival. Finally, the passenger behavioural trends described in analysis undertaken with the earlier database are confirmed with the wider data set.
Resumo:
This paper describes recent developments with the Aircraft Accident Statistics and Knowledge (AASK) database. The AASK database is a repository of survivor accounts from aviation accidents developed by the Fire Safety Engineering Group of the University of Greenwich with support from the UK CAA. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. Access to the latest version of the database (AASK V3.0) is available over the Internet. AASK consists of information derived from both passenger and cabin crew interviews, information concerning fatalities and basic accident details. Also provided with AASK is the Seat Plan Viewer that graphically displays the starting locations of all the passengers - both survivors and fatalities - as well as the exits used by the survivors. Data entered into the AASK database is extracted from the transcripts supplied by the National Transportation Safety Board in the US and the Air Accident Investigation Branch in the UK. The quality and quantity of the data was very variable ranging from short summary reports of the accidents to boxes of individual accounts from passengers, crew and investigators. Data imported into AASK V3.0 includes information from 55 accidents and individual accounts from 1295 passengers and 110 crew.
Resumo:
The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.
Resumo:
This paper describes the AASK database. The AASK database is unique as it is a record of human behaviour during survivable aviation accidents. The AASK database is compiled from interview data compiled by agencies such as the NTSB and the AAIB. The database can be found on the website http://fseg.gre.ac.uk
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However such models have a heavy dependency on real evacuation data in order to (a) identify the key processes and factors associated with evacuation, (b) quantify variables and parameters associated with the identified factors/processes and finally (c) validate the models. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise from three major data sources in order to address these issues. This paper describes the extraction and application of data from one of these sources - aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (aircraft accident statistics and knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK comprises four component sub-databases. These consist of the ACCIDENT (crash details), FLIGHT ATTENDANT (observations and actions of the flight attendants), FATALS (details concerning passenger fatalities) and PAX (observations and accounts from individual passengers) databases. AASK currently contains information from 25 survivable aviation accidents covering the period 4 April 1977 to 6 August 1995, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. In addition to aiding the development of aircraft evacuation models, AASK is also being used to challenge some of the myths which proliferate in the aviation safety industry such as, passenger exit selection during evacuation, nature and frequency of seat jumping, speed of passenger response and group dynamics. AASK can also be used to aid in the development of a more comprehensive approach to conducting post accident interviews, and will eventually be used to store the data directly.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However, such models have a heavy dependency on real evacuation data. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise in order to address this issue. This paper describes the extraction and application of data from aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (Aircraft Accident Statistics and Knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK currently contains information from 25 survivable aviation accidents covering the period 04/04/77 to 06/08/95, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. Copyright © 1999 John Wiley & Sons, Ltd.
Resumo:
A hotly debated issue in the area of aviation safety is the number of cabin crew members required to evacuate an aircraft in the event of an emergency. Most countries regulate the minimum number required for the safe operation of an aircraft, but these rulings are based on little if any scientific evidence. Another issue of concern is the failure rate of exits and slides. This paper examines these issues using the latest version of Aircraft Accident Statistics and Knowledge database AASK V4.0, which contains information from 105 survivable crashes and more than 2,000 survivors, including accounts from 155 cabin crew members.
Resumo:
This paper examines the influence of exit availability on evacuation time for narrow body aircraft under certification trial conditions using computer simulation. A narrow body aircraft which has previously passed the certification trial is used as the test configuration. While maintaining the certification requirement of 50% of the available exits, six different configurations are examined. These include the standard certification and five other exit configurations based on commonly occurring exit combinations found in accidents. These configurations are based on data derived from the AASK database and the evacuation simulations are performed using the airEXODUS evacuation software. The results show that the certification practise of using half of the available exits predominately down one side of the aircraft is neither statistically relevant nor challenging. For the aircraft cabin layout examined, the exit configuration used in certification trial produces the shortest egress times. Furthermore, three of the six exit combinations investigated result in predicted egress times in excess of 90 seconds, suggesting that the aircraft would not satisfy the certification requirement under these conditions.
Resumo:
The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance. 1. Jin, T., and Yamada T., "Experimental Study of Human Behavior in Smoke Filled Corridors," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 511-519. 2. Galea, E.R., and Galparsoro, J.M.P., "EXODUS: An Evacuation Model for Mass Transport Vehicles," UK CAA Paper 93006 ISBN 086039 543X, CAA London, 1993. 3. Galea, E.R., and Galparsoro, J.M.P., "A Computer Based Simulation Model for the Prediction of Evacuation from Mass Transport Vehicles," Fire Safety Journal, Vol. 22, 1994, pp. 341-366. 4. Galea, E.R., Owen, M., and Lawrence, P., "Computer Modeling of Human Be havior in Aircraft Fire Accidents," to appear in the Proceedings of Combus tion Toxicology Symposium, CAMI, Oklahoma City, OK, 1995. 5. Kisko, T.M. and Francis, R.L., "EVACNET+: A Computer Program to Determine Optimal Building Evacuation Plans," Fire Safety Journal, Vol. 9, 1985, pp. 211-220. 6. Levin, B., "EXITT, A Simulation Model of Occupant Decisions and Actions in Residential Fires," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 561-570. 7. Fahy, R.F., "EXIT89: An Evacuation Model for High-Rise Buildings," Pro ceedings of The Third International Sym posium on Fire Safety Science, 1991, pp. 815-823. 8. Thompson, P.A., and Marchant, E.W., "A Computer Model for the Evacuation of Large Building Populations," Fire Safety Journal, Vol. 24, 1995, pp. 131-148. 9. Still, K., "New Computer System Can Predict Human Behavior Response to Building Fires," FIRE 84, 1993, pp. 40-41. 10. Ketchell, N., Cole, S.S., Webber, D.M., et.al., "The Egress Code for Human Move ment and Behavior in Emergency Evacu ations," Engineering for Crowd Safety (Smith, R.A., and Dickie, J.F., Eds.), Elsevier, 1993, pp. 361-370. 11. Takahashi, K., Tanaka, T. and Kose, S., "An Evacuation Model for Use in Fire Safety Design of Buildings," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 551- 560. 12. G2 Reference Manual, Version 3.0, Gensym Corporation, Cambridge, MA. 13. XVT Reference Manual, Version 3.0 XVT Software Inc., Boulder, CO. 14. Galea, E.R., "On the Field Modeling Approach to the Simulation of Enclosure Fires, Journal of Fire Protection Engineering, Vol. 1, No. 1, 1989, pp. 11-22. 15. Purser, D.A., "Toxicity Assessment of Combustion Products," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, pp. 1-200 - 1-245, 1988. 16. Hankin, B.D., and Wright, R.A., "Pas senger Flows in Subways," Operational Research Quarterly, Vol. 9, 1958, pp. 81-88. 17. HMSO, The Building Regulations 1991 - Approved Document B, section B 1 (1992 edition), HMSO publications, London, pp. 9-40. 18. Polus A., Schofer, J.L., and Ushpiz, A., "Pedestrian Flow and Level of Service," Journal of Transportation Engineering, Vol. 109, 1983, pp. 46-47. 19. Muir, H., Marrison, C., and Evans, A., "Aircraft Evacuations: the Effect of Passenger Motivation and Cabin Con figuration Adjacent to the Exit," CAA Paper 89019, ISBN 0 86039 406 9, 1989. 20. Muir, H., Private communication to appear as a CAA report, 1996.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in cabin crew training and post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation `Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
Computer based mathematical models describing aircraft fire have a role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost involved in performing large-scale fire experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be prohibitively high, the development and use of these modelling tools may become essential if these aircraft are to prove a safe and viable reality. By describing the present capabilities and limitations of aircraft fire models, this paper will examine the future development of these models in the areas of large scale applications through parallel computing, combustion modelling and extinguishment modelling.
Resumo:
This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60-foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. A main finding of this work is that for the cabin section examined, with a maximum passenger load of 220 and under certification conditions, exit separations up to 170ft will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114ft if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration.