6 resultados para Aging of materials
em Greenwich Academic Literature Archive - UK
Resumo:
The manufacture of materials products involves the control of a range of interacting physical phenomena. The material to be used is synthesised and then manipulated into some component form. The structure and properties of the final component are influenced by both interactions of continuum-scale phenomena and those at an atomistic-scale level. Moreover, during the processing phase there are some properties that cannot be measured (typically the liquid-solid phase change). However, it seems there is a potential to derive properties and other features from atomistic-scale simulations that are of key importance at the continuum scale. Some of the issues that need to be resolved in this context focus upon computational techniques and software tools facilitating: (i) the multiphysics modeling at continuum scale; (ii) the interaction and appropriate degrees of coupling between the atomistic through microstructure to continuum scale; and (iii) the exploitation of high-performance parallel computing power delivering simulation results in a practical time period. This paper discusses some of the attempts to address each of the above issues, particularly in the context of materials processing for manufacture.
Resumo:
Electromagnetic processing of materials (EPM) is one of the most widely practiced and fast growing applications of magnetic and electric forces to fluid flow. EPM is encountered in both industrial processes and laboratory investigations. Applications range in scale from nano-particle manipulation to tonnes of liquid metal treated in the presence of various configurations of magnetic fields. Some of these processes are specifically designed and made possible by the use of the electromagnetic force, like the magnetic levitation of liquid droplets, whilst others involve electric currents essential for electrothermal or electrochemical reasons, for instance, in electrolytic metal production and in induction melting. An insight for the range of established and novel EPM applications can be found in the review presented by Asai [1] in the EPM-2003 conference proceedings.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
The effect of current stressing on the reliability of 63Sn37Pb solder joints with Cu pads was investigated at temperatures of −5 °C and 125 °C up to 600 h. The samples were stressed with 3 A current (6.0 × 102 A/cm2 in the solder joint with diameter of 800 μm and 1.7 × 104 A/cm2 in the Cu trace with cross section area of 35 × 500 μm). The temperatures of the samples and interfacial reaction within the solder joints were examined. The microstructural change of the solder joints aged at 125 °C without current flow was also evaluated for comparison. It was confirmed that the current flow could cause the temperature of solder joints to rise rapidly and remarkably due to accumulation of massive Joule heat generated by the Cu trace. The solder joints stressed at 125 °C with 3 A current had an extensive growth of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC) at both top and bottom solder-to-pad interfaces. It was a direct result of accelerated aging rather than an electromigration or thermomigration effect in this experiment. The kinetic is believed to be bulk diffusion controlled solid-state reaction, irrespective of the electron flow direction. When stressed at −5 °C with 3 A current, no significant change in microstructure and composition of the solder joints had occurred due to a very low diffusivity of the atoms as most Joule heat was eliminated at low temperature. The IMC evolution of the solder joints aged at 125 °C exhibited a subparabolic growth behavior, which is presumed to be a combined mechanism of grain boundary diffusion and bulk diffusion. This is mainly ascribed to the retardant effect against the diffusion course by the sufficiently thick IMC layer that was initially formed during the reflow soldering.
Resumo:
Thermosetting polymer materials are widely utilised in modern microelectronics packaging technology. These materials are used for a number of functions, such as for device bonding, for structural support applications and for physical protection of semiconductor dies. Typically, convection heating systems are used to raise the temperature of the materials to expedite the polymerisation process. The convection cure process has a number of drawbacks including process durations generally in excess of 1 hour and the requirement to heat the entire printed circuit board assembly, inducing thermomechanical stresses which effect device reliability. Microwave energy is able to raise the temperature of materials in a rapid, controlled manner. As the microwave energy penetrates into the polymer materials, the heating can be considered volumetric – i.e. the rate of heating is approximately constant throughout the material. This enables a maximal heating rate far greater than is available with convection oven systems which only raise the surface temperature of the polymer material and rely on thermal conductivity to transfer heat energy into the bulk. The high heating rate, combined with the ability to vary the operating power of the microwave system, enables the extremely rapid cure processes. Microwave curing of a commercially available encapsulation material has been studied experimentally and through use of numerical modelling techniques. The material assessed is Henkel EO-1080, a single component thermosetting epoxy. The producer has suggested three typical convection oven cure options for EO1080: 20 min at 150C or 90 min at 140C or 120 min at 110C. Rapid curing of materials of this type using advanced microwave systems, such as the FAMOBS system [1], is of great interest to microelectronics system manufacturers as it has the potential to reduce manufacturing costs, increase device reliability and enables new device designs. Experimental analysis has demonstrated that, in a realistic chip-on-board encapsulation scenario, the polymer material can be fully cured in approximately one minute. This corresponds to a reduction in cure time of approximately 95 percent relative to the convection oven process. Numerical assessment of the process [2] also suggests that cure times of approximately 70 seconds are feasible whilst indicating that the decrease in process duration comes at the expense of variation in degree of cure within the polymer.