1 resultado para Adverse event relatedness
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- JISC Information Environment Repository (4)
- Repository Napier (1)
- Aquatic Commons (13)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston College Law School, Boston College (BC), United States (2)
- Boston University Digital Common (1)
- Brock University, Canada (6)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (82)
- Center for Jewish History Digital Collections (2)
- Centro Hospitalar do Porto (1)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (31)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (2)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (14)
- Indian Institute of Science - Bangalore - Índia (16)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (123)
- Queensland University of Technology - ePrints Archive (182)
- Repositorio Academico Digital UANL (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (14)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- School of Medicine, Washington University, United States (3)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (14)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (9)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (2)
- University of Washington (4)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Serial Analysis of Gene Expression (SAGE) is a relatively new method for monitoring gene expression levels and is expected to contribute significantly to the progress in cancer treatment by enabling a precise and early diagnosis. A promising application of SAGE gene expression data is classification of tumors. In this paper, we build three event models (the multivariate Bernoulli model, the multinomial model and the normalized multinomial model) for SAGE data classification. Both binary classification and multicategory classification are investigated. Experiments on two SAGE datasets show that the multivariate Bernoulli model performs well with small feature sizes, but the multinomial performs better at large feature sizes, while the normalized multinomial performs well with medium feature sizes. The multinomial achieves the highest overall accuracy.