3 resultados para Active components in spice extracts
em Greenwich Academic Literature Archive - UK
Resumo:
From the model geometry creation to the model analysis, the stages in between such as mesh generation are the most manpower intensive phase in a mesh-based computational mechanics simulation process. On the other hand the model analysis is the most computing intensive phase. Advanced computational hardware and software have significantly reduced the computing time - and more importantly the trend is downward. With the kind of models envisaged coming, which are larger, more complex in geometry and modelling, and multiphysics, there is no clear trend that the manpower intensive phase is to decrease significantly in time - in the present way of operation it is more likely to increase with model complexity. In this paper we address this dilemma in collaborating components for models in electronic packaging application.
Resumo:
This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.