3 resultados para Acrylic Varnish
em Greenwich Academic Literature Archive - UK
Resumo:
OBJECTIVES: This paper reports a study of the water loss behaviour of two commercial glass-ionomer cements coated with varnishes. METHODS: For each cement (Fuji IX Fast or Chemflex), specimens (6mmdiameterx2mm depth) were prepared and cured for 10min at 37 degrees C. They were exposed to a desiccating environment over H(2)SO(4) either uncoated or coated with the appropriate varnish (Fuji Varnish, a solvent-based lacquer, or Fuji Coat, a light-cured varnish). Four specimens were prepared for each material. They were weighed at hourly intervals for 6h, daily for up to 5 days, then weekly thereafter until equilibration. RESULTS: Unlike the uncoated specimens, water loss from varnished cements was not Fickian, but followed the form: mass loss=A/t+B, where t is time, A and B are constants specific to each cement/varnish combination. A varied from 1.22 to 1.30 (mean 1.26, standard deviation 0.04), whereas B varied from 1.54 to 2.09 (mean -1.83, standard deviation 0.29). At equilibrium, varnished specimens lost much less water than unvarnished ones (p>0.01) but there was no significant difference between the solvent-based and the light-cured varnishes. SIGNIFICANCE: Varnishes protect immature glass-ionomer cements from drying out by altering the mechanism of water loss. This slows the rate of drying but does not necessarily change the total amount of water retained. It confirms that, in clinical use, glass-ionomer restoratives should be varnished to allow them to mature satisfactorily.
Resumo:
A series of poly(N-isopropylacrylamide) [pNIPAM]-based homo-polymer and co-polymer microgel particles were prepared by surfactant-free emulsion polymerisation. The co-monomers were acrylic acid. 4-vinylpyridine. butyl acrylate, 4-vinylbiphenyl and vinyl laurate. Co-monomers were added at a concentration of 10% (w/w) relative to the base monomer pNIPAM for the preparation of each co-polymer microgel. The co-monomers chosen vary by their organic chain length, polarity and pH sensitivity, as these should influence how the particles behave in aqueous and non-aqueous solvents. The effect of adding different types of co-monomer into the microgel structure was investigated with respect to their dispersibility in different solvents. These microgel particles have shown useful application in the removal of water from biodiesel prepared from rape seed. Karl Fischer experiments showed that microgel particles can be used to reduce the water content in biodiesel to an acceptable level for incorporation into internal combustion engines. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was determine whether bonding of glass-ionomer cements to non-carious dentine differed from that to carious dentine. Five commercial cements were used, namely Fuji IX GP, Fuji IX capsulated, Fuji IX Fast capsulated (all GC, Japan), Ketac-Molar and Ketac-Molar Aplicap (both 3M-ESPE, Germany). Following conditioning of the substrate with 10% poly (acrylic acid) for 10 s, sets of 10 samples of the cements were bonded to prepared teeth that had been removed for orthodontic reasons. The teeth used had either sound dentine or sclerotic dentine. Shear bond strengths were determined following 24 h storage. For the auto-mixed cements, shear bond strength to sound dentine was found not to differ statistically from shear bond strength to sclerotic dentine whereas for hand-mixed cements, shear bond to sound dentine was found to be higher than to carious dentine (to at least p < 0.05). This shows that the chemical effects arising from interactions of glass-ionomer cements with the mineral phase of the tooth are the most important in developing strong bonds, at least in the shorter term.