12 resultados para Acoustic surface wave devices.

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soldering technologies continue to evolve to meet the demands of the continuous miniaturisation of electronic products, particularly in the area of solder paste formulations used in the reflow soldering of surface mount devices. Stencil printing continues to be a leading process used for the deposition of solder paste onto printed circuit boards (PCBs) in the volume production of electronic assemblies, despite problems in achieving a consistent print quality at an ultra-fine pitch. In order to eliminate these defects a good understanding of the processes involved in printing is important. Computational simulations may complement experimental print trials and paste characterisation studies, and provide an extra dimension to the understanding of the process. The characteristics and flow properties of solder pastes depend primarily on their chemical and physical composition and good material property data is essential for meaningful results to be obtained by computational simulation.This paper describes paste characterisation and computational simulation studies that have been undertaken through the collaboration of the School of Aeronautical, Mechanical and Manufacturing Engineering at Salford University and the Centre for Numerical Modelling and Process Analysis at the University of Greenwich. The rheological profile of two different paste formulations (lead and lead-free) for sub 100 micron flip-chip devices are tested and applied to computational simulations of their flow behaviour during the printing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solder paste is the most widely used bonding material in the assembly of surface mount devices in electronic industries. It generally has a flocculated structure (show aggregation of solder particles), and hence are known to exhibit a thixotropic behavior. This is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this timedependent rheological behaviour of solder pastes is crucial for establishing the relationships between the pastes’ structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a novel method which has been developed for characterising the timedependent and non-Newtonian rheological behaviour of solder pastes as a function of shear rates. The objective of the study reported in this paper is to investigate the thixotropic build-up behaviour of solder pastes. The stretched exponential model(SEM) has been used to model the structural changes during the build-up process and to correlate model parameters with the paste printing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variation in temperature can have a significant impact on the rheological characterisation of solder pastes used in the electronic assembly of surface mount devices. This paper concerns the study of the effect of temperature on slumping characteristics of lead-free solder pastes. The identification of the slumping characteristics can help in the correlation of the pastes characteristics to its printing performance. Further issues, which aid in justifying the undertaking of such a study, include the temperature differences identified both at the squeegee during the print, and during reflow. Due to these temperature variations, it is imperative to understand how slump differs with a temperature gradient

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micromagnetic ripple structures on the surfaces of thick specimens of ultra-soft magnetic material having strong surface anisotropy Ks favouring out-of-surface magnetization have been calculated. These ripples have wavelengths of the order of 0.1 μm and extend to a depth ∼ √A/Ms, where A is the exchange constant and Ms is the saturation magnetization. The wave-vectors of the ripple structures are either transverse or parallel to the bulk magnetization. Both structures have lower energy than the one-dimensional structure discussed by O'Handley and Woods, and they exhibit stronger normal magnetization. The transverse structure requires a surface anisotropy Ks ≥ 0.80K0, where is that required for the one-dimensional structure. The threshold for longitudinal ripples is 0.84K0. It is suggested that the transverse structure probably constitutes the ground state. The magnitudes of Ks and A should be obtainable from measurements of the ripple wavelength and amplitude, and Ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compuational fluid dynamics (CFD) is used to help understand the gas flow characteristics in the wave soldering process. CFD has the ability to calculate (1) heal transfer, (2) fluid dynamics, and (3) oxygen concentration throughout the wave soldering machine. Understanding the impact of fluid dynamics on oxygen concentration is important as excessive oxygen at the solder bath can lead to high dross contents and hence poor solder joint quality on the printed circuit board. This paper describes the CFD modelling approach and illustrates its capability for a machine which has nitrogen injectors near the solder bath. Different magnitiutes of nitrogen flow rates are investigated and it is demonstrated how these effect the oxygen concentration at the bath surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen is now used in wave soldering machines to help lower the amount of dross that can be formed on the solder bath surface. The paper provides details on the use of computational fluid dynamics in helping understand the flow profiles of nitrogen in a wave soldering machine and to predict the concentration of nitrogen and oxygen around the solder bath.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the use of the acoustic emission (AE) monitoring technique for use in identifying the damage mechanisms present in paper associated with its production process. The microscopic structure of paper consists of a random mesh of paper fibres connected by hydrogen bonds. This implies the existence of two damage mechanisms, the failure of a fibre-fibre bond and the failure of a fibre. This paper describes a hybrid mathematical model which couples the mechanics of the mass-spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. The derivation of the mass-spring model can be found in [1,2], with details of the acoustic wave equation found in [3,4]. The numerical implementation of the vibro-acoustic model is discussed in detail with particular emphasis on the damping present in the numerical model. The hybrid model uses an implicit solver which intrinsically introduces artificial damping to the solution. The artificial damping is shown to affect the frequency response of the mass-spring model, therefore certain restrictions on the simulation time step must be enforced so that the model produces physically accurate results. The hybrid mathematical model is used to simulate small fibre networks to provide information on the acoustic response of each damage mechanism. The simulated AEs are then analysed using a continuous wavelet transform (CWT), described in [5], which provides a two dimensional time-frequency representation of the signal. The AEs from the two damage mechanisms show different characteristics in the CWT so that it is possible to define a fibre-fibre bond failure by the criteria listed below. The dominant frequency components of the AE must be at approximately 250 kHz or 750 kHz. The strongest frequency component may be at either approximately 250 kHz or 750 kHz. The duration of the frequency component at approximately 250 kHz is longer than that of the frequency component at approximately 750 kHz. Similarly, the criteria for identifying a fibre failure are given below. The dominant frequency component of the AE must be greater than 800 kHz. The duration of the dominant frequency component must be less than 5.00E-06 seconds. The dominant frequency component must be present at the front of the AE. Essentially, the failure of a fibre-fibre bond produces a low frequency wave and the failure of a fibre produces a high frequency pulse. Using this theoretical criteria, it is now possible to train an intelligent classifier such as the Self-Organising Map (SOM) [6] using the experimental data. First certain features must be extracted from the CWTs of the AEs for use in training the SOM. For this work, each CWT is divided into 200 windows of 5E-06s in duration covering a 100 kHz frequency range. The power ratio for each windows is then calculated and used as a feature. Having extracted the features from the AEs, the SOM can now be trained, but care is required so that the both damage mechanisms are adequately represented in the training set. This is an issue with paper as the failure of the fibre-fibre bonds is the prevalent damage mechanism. Once a suitable training set is found, the SOM can be trained and its performance analysed. For the SOM described in this work, there is a good chance that it will correctly classify the experimental AEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes hybrid mathematical model which couples the mechanics of the mass/spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. A discussion of the coupling method is presented including remarks on the errors encountered intrinsic to the discretisation scheme. The numerical results of a vibrating rubber band and a vibrating paper fibre are compared to their experimental counterparts. The fundamental frequencies of the acoustic signals are compared showing a close agreement between the experimental and numerical results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-section variable frequency microwave systems enable rapid, controllable heating of materials within an individual surface mount component in a chip-on=board assembly. The ability to process devices individually allows components with disparate processing requirements to be mounted on the same assembly. The temperature profile induced by the microwave system can be specifically tailored to the needs of the component, allowing optimisation and degree of cure whilst minimising thermomechanical stresses. This paper presents a review of dual-section microwave technology and its application to curing of thermosetting polymer materials in microelectronics applications. Curing processes using both conventional and microwave technologies are assessed and compared. Results indicate that dual-section microwave systems are able to cure individual surface mount packages in a significantly shorter time, at the expense of an increase in thermomechanical stresses and a greater variation in degree of cure.