2 resultados para Abaxial and adaxial leaf surfaces

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To investigate the effect of repeated culture in a rich medium on certain genetic, metabolic, pathogenic and structural characteristics of fresh isolates of Bacillus thuringiensis. METHODS AND RESULTS: Four strains of B. thuringiensis, which had been isolated in vegetative form from leaf surfaces, were grown for 500 generations in batch culture in a rich medium. One of the strains, S4g, differed from the parent in the following respects: greater cell width; changed plasmid profile; complete loss of ability to produce delta-endotoxins; loss of ability to produce beta-exotoxin and disruption of vip3 gene; radically different fatty acid composition; and altered metabolic activity. Two of the other evolved strains (S1g and S6g) showed differences in fatty acid profiles compared with the parents. Genetic finger-printing showed that there were also mutations in the cry genes of two of the evolved strains (S1g and S2g). The delta-endotoxins of strain S6g were significantly less toxic to the larvae of Pieris brassica compared with those of the parent and it also differed in the plasmid content. CONCLUSION: Radical and unpredictable changes can occur in fresh isolates of B. thuringiensis when subjected to growth in the laboratory. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first analysis of a Gram positive and biotechnologically significant bacterium after repeated laboratory culture. It is of great relevance to the biotechnological exploitation of B. thuringiensis that prolonged growth of environmental isolates on laboratory culture media can have profound effects on their structure, genome and virulence determinants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride-based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)-based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values