3 resultados para AK3-217
em Greenwich Academic Literature Archive - UK
Resumo:
There are three main approaches to the representation of temporal information in AI literature: the so-called method of temporal arguments that simply extends functions and predicates of first-order language to include time as the additional argument; modal temporal logics which are extensions ofthe propositional or predicate calculus with modal temporal operators; and reified temporal logics which reify standard propositions of some initial language (e.g., the classical first-order or modal logic) as objects denoting propositional terms. The objective of this paper is to provide an overview onthe temporal reified approach by looking closely atsome representative existing systems featuring reified propositions, including those of Allen, McDermott, Shoham, Reichgelt, Galton, and Ma and Knight. We shall demonstrate that, although reified logics might be more complicated in expressing assertions about some given objects with respect to different times, they accord a special status to time and therefore have several distinct advantages in talking about some important issues which would be difficult (if not impossible) to express in other approaches.
Resumo:
We study a two-machine open shop scheduling problem, in which the machines are not continuously available for processing. No preemption is allowed in the processing of any operation. The objective is to minimize the makespan. We consider approximability issues of the problem with more than one non-availability intervals and present an approximation algorithm with a worst-case ratio of 4/3 for the problem with a single non-availability interval.
Resumo:
Predicting the reliability of newly designed products, before manufacture, is obviously highly desirable for many organisations. Understanding the impact of various design variables on reliability allows companies to optimise expenditure and release a package in minimum time. Reliability predictions originated in the early years of the electronics industry. These predictions were based on historical field data which has evolved into industrial databases and specifications such as the famous MIL-HDBK-217 standard, plus numerous others. Unfortunately the accuracy of such techniques is highly questionable especially for newly designed packages. This paper discusses the use of modelling to predict the reliability of high density flip-chip and BGA components. A number of design parameters are investigated at the assembly stage, during testing, and in-service.