28 resultados para AIRCRAFT SEAT

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However such models have a heavy dependency on real evacuation data in order to (a) identify the key processes and factors associated with evacuation, (b) quantify variables and parameters associated with the identified factors/processes and finally (c) validate the models. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise from three major data sources in order to address these issues. This paper describes the extraction and application of data from one of these sources - aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (aircraft accident statistics and knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK comprises four component sub-databases. These consist of the ACCIDENT (crash details), FLIGHT ATTENDANT (observations and actions of the flight attendants), FATALS (details concerning passenger fatalities) and PAX (observations and accounts from individual passengers) databases. AASK currently contains information from 25 survivable aviation accidents covering the period 4 April 1977 to 6 August 1995, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. In addition to aiding the development of aircraft evacuation models, AASK is also being used to challenge some of the myths which proliferate in the aviation safety industry such as, passenger exit selection during evacuation, nature and frequency of seat jumping, speed of passenger response and group dynamics. AASK can also be used to aid in the development of a more comprehensive approach to conducting post accident interviews, and will eventually be used to store the data directly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes recent developments with the database leading to the development of AASK v3.0. These include significantly increasing the number of passenger accounts in the database, the introduction of cabin crew accounts, the introduction of fatality information, improved functionality through the seat plan viewer utility and improved ease of access to the database via the internet. In addition, the paper demonstrates the use of the database by investigating a number of important issues associated with aircraft evacuation. These include issues associated with social bonding and evacuation, the relationship between the number of crew and evacuation efficiency, frequency of exit/slide failures in accidents and exploring possible relationships between seating location and chances of survival. Finally, the passenger behavioural trends described in analysis undertaken with the earlier database are confirmed with the wider data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes recent developments with the Aircraft Accident Statistics and Knowledge (AASK) database. The AASK database is a repository of survivor accounts from aviation accidents developed by the Fire Safety Engineering Group of the University of Greenwich with support from the UK CAA. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. Access to the latest version of the database (AASK V3.0) is available over the Internet. AASK consists of information derived from both passenger and cabin crew interviews, information concerning fatalities and basic accident details. Also provided with AASK is the Seat Plan Viewer that graphically displays the starting locations of all the passengers - both survivors and fatalities - as well as the exits used by the survivors. Data entered into the AASK database is extracted from the transcripts supplied by the National Transportation Safety Board in the US and the Air Accident Investigation Branch in the UK. The quality and quantity of the data was very variable ranging from short summary reports of the accidents to boxes of individual accounts from passengers, crew and investigators. Data imported into AASK V3.0 includes information from 55 accidents and individual accounts from 1295 passengers and 110 crew.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report concerns the development of the AASK V4.0 database (CAA Project 560/SRG/R+AD). AASK is the Aircraft Accident Statistics and Knowledge database, which is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from interviews of the occupants involved in aircraft accidents. The AASK database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. With support from the UK CAA (Project 277/SRG/R&AD), AASK V3.0 was developed. This was an on-line prototype system available over the internet to selected users and included a significantly increased number of passenger accounts compared with earlier versions, the introduction of cabin crew accounts, the introduction of fatality information and improved functionality through the seat plan viewer utility. The most recently completed AASK project (Project 560/SRG/R+AD) involved four main components: a) analysis of the data collected in V3.0; b) continued collection and entry of data into AASK; c) maintenance and functional development of the AASK database; and d) user feedback survey. All four components have been pursued and completed in this two-year project. The current version developed in the last year of the project is referred to as AASK V4.0. This report provides summaries of the work done and the results obtained in relation to the project deliverables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in cabin crew training and post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation `Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However, such models have a heavy dependency on real evacuation data. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise in order to address this issue. This paper describes the extraction and application of data from aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (Aircraft Accident Statistics and Knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK currently contains information from 25 survivable aviation accidents covering the period 04/04/77 to 06/08/95, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing aircraft fire have a role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost involved in performing large-scale fire experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be prohibitively high, the development and use of these modelling tools may become essential if these aircraft are to prove a safe and viable reality. By describing the present capabilities and limitations of aircraft fire models, this paper will examine the future development of these models in the areas of large scale applications through parallel computing, combustion modelling and extinguishment modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60-foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. A main finding of this work is that for the cabin section examined, with a maximum passenger load of 220 and under certification conditions, exit separations up to 170ft will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114ft if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very Large Transport Aircraft (VLTA) pose considerable challenges to designers, operators and certification authorities. Questions concerning seating arrangement, nature and design of recreational space, the number, design and location of internal staircases, the number of cabin crew required and the nature of the cabin crew emergency procedures are just some of the issues that need to be addressed. Other more radical concepts such as blended wing body (BWB) design, involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisles be made wider to accommodate more passengers? In this paper we demonstrate how computer based evacuation models can be used to investigate these issues through examination of staircase evacuation procedures for VLTA and aisle/exit configuration for BWB cabin layouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing full-scale certification trials are high, the development and use of these evacuation modelling tools are essential. Furthermore, evacuation models provide insight into the evacuation process that is impossible to derive from a single certification trial. The airEXODUS evacuation model has been under development since 1989 with support from the UK CAA and the aviation industry. In addition to describing the capabilities of the airEXODUS evacuation model, this paper describes the findings of a recent CAA project aimed at investigating model accuracy in predicting past certification trials. Furthermore, airEXODUS is used to examine issues related to the Blended Wing Body (BWB) and Very Large Transport Aircraft (VLTA). These radical new aircraft concepts pose considerable challenges to designers, operators and certification authorities. BWB concepts involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisle be made wider to accommodate more passengers? In this paper we discuss various issues evacuation related issues associated VLTA and BWB aircraft and demonstrate how computer based evacuation models can be used to investigage these issues through examination of aisle/exit configurations for BWB cabin layouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60 foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. Indeed, other factors such as exit flow rate and exit availability are shown to exert a strong influence on critical exit separations. A main finding of this work is that for the cabin section examined under certification conditions, exit separations up to 170 feet will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114 feet if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration. This has implications when determining maximum allowable exit separations for wide and narrow body aircraft. It is also relevant when considering the maximum allowable separation between different exit types on a given aircraft configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report covers the testing and evaluation of the airEXODUS evacuation model. airEXODUS has been developed for evacuation certification testing, crew training and aircraft design. The report demonstrates the effectiveness of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a methodology for the application of computer simulation to the evacuation certification of aircraft is suggested. The methodology suggested here involves the use of computer simulation, historic certification data, component testing and full-scale certification trials. The proposed methodology sets out a protocol for how computer simulation should be undertaken in a certification environment and draws on experience from both the marine and building industries. Along with the suggested protocol, a phased introduction of computer models to certification is suggested. Given the sceptical nature of the aviation community regarding any certification methodology change in general, this would involve as a first step the use of computer simulation in conjunction with full-scale testing. The computer model would be used to reproduce a probability distribution of likely aircraft performance under current certification conditions and in addition, several other more challenging scenarios could be developed. The combination of full-scale trial, computer simulation (and if necessary component testing) would provide better insight into the actual performance capabilities of the aircraft by generating a performance probability distribution or performance envelope rather than a single datum. Once further confidence in the technique is established, the second step would only involve computer simulation and component testing. This would only be contemplated after sufficient experience and confidence in the use of computer models have been developed. The third step in the adoption of computer simulation for certification would involve the introduction of several scenarios based on for example exit availability instructed by accident analysis. The final step would be the introduction of more realistic accident scenarios into the certification process. This would require the continued development of aircraft evacuation modelling technology to include additional behavioural features common in real accident scenarios.