3 resultados para ACCELERATING FRONTS
em Greenwich Academic Literature Archive - UK
Resumo:
Awareness of climate change and adaptations of building stock play a key role in the UK government’s environmental agenda. While some European countries and countries like Japan move forward by bringing their sustainability agenda to the public sector, the UK seems to be slow in embracing these ideas and long term sustainability in improved products and processes for better performance, efficiency and innovative application of renewable technology is yet to come. While funding remains a major constraint research show that a number of detrimental issues including; organisation, risk, mind sets of the stakeholders, planning constraints, reluctance to accept change and the unexploited markets are major contributing factors. Most of these barriers can be overcome with research, development and information and knowledge transfer techniques. Educating all stakeholders can act as an accelerator for innovation. This paper examines innovation in the built environment and how research and education can stimulate this process. It explores drivers and barriers for innovation and how research and education in construction, design, engineering and project management can enhance this process. It presents and discusses lessons learnt from two action research projects in relation to innovation.
Resumo:
The UK government has been promoting innovation in the construction sector to improve the sustainability of the built environment. It has the potential and strength in developing construction research in design and engineering, but the impact of these processes seems to be slow in reaching the residential sector. While funding remains a major constraint research show that a number of detrimental issues including; organisation, risk, mind sets of the stakeholders, planning constraints,reluctance to accept change and the unexploited markets are major contributing factors. Most of these barriers can be overcome with research, development and information and knowledge transfer techniques. Educating all stakeholders can act as an accelerator for innovation. Given the large stock of existing dwellings, the situation is compounded, by issues related to climate change, to the point that this problem can no longer be ignored and requires an urgent response from all sectors involved. This paper attempts to highlight some of the key issues that are important in accelerating innovation in the housing sector. It briefly looks at the process of innovation in housing and presents lessons learnt from two research projects. The drivers and barriers and the role played by the government are examined in relation to the housing context.
Resumo:
Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition Of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of Si-29 solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research oil the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique. (C) 2008 Elsevier Ltd. All rights reserved.