2 resultados para 984

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sahara desert is a significant source of particulate pollution not only to the Mediterranean region, but also to the Atlantic and beyond. In this paper, PM 10 exceedences recorded in the UK and the island of Crete are studied and their source investigated, using Lagrangian Particle Dispersion (LPD) methods. Forward and inverse simulations identify Saharan dust storms as the primary source of these episodes. The methodology used allows comparison between this primary source and other possible candidates, for example large forest fires or volcanic eruptions. Two LPD models are used in the simulations, namely the open source code FLEXPART and the proprietary code HYSPLIT. Driven by the same meteorological fields (the ECMWF MARS archive and the PSU/NCAR Mesoscale model, known as MM5) the codes produce similar, but not identical predictions. This inter-model comparison enables a critical assessment of the physical modelling assumptions employed in each code, plus the influence of boundary conditions and solution grid density. The outputs, in the form of particle concentrations evolving in time, are compared against satellite images and receptor data from multiple ground-based sites. Quantitative comparisons are good, especially in predicting the time of arrival of the dust plume in a particular location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and infrared spectra are reported for rhodanine, 3-aminorhodanine and 3-methylrhodanine in the solid state. Comparisons of the spectra of non-deuterated/deuterated species facilitate discrimination of the bands associated with N-H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas-phase molecules, at the B3-LYP/cc-pVTZ and B3-PW91/cc-pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ~ 1713 and 1779 cm-1, whereas a Raman and IR band at ~ 1457 cm-1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3-aminorhodanine and 3-methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm-1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm-1 in the IR spectra, respectively.