2 resultados para 919

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the performance of flexible substrates for lead-free applications was studied using finite element method (FEM). Firstly, the thermal induced stress in the flex substrate during the lead free solder reflow process was predicted. The shear stress at the interface between the copper track and flex was plotted. This shear stress increases with the thickness of the copper track. Secondly, an ACF flip chip was taken as a typical lead-free application of the flex substrate. The reflow effect on the reliability of ACF interconnections was analyzed. Higher stress was identified along the interface between the conductive particle and the metallization, and the interfacial stress increases with the reflow peak temperature and the coefficient of thermal expansion (CTE) of the adhesive. The moisture effect on the reliability of ACF joints were studied using a macro-micro modeling technique, the predominantly tensile stress found at the interface between the conductive particle and metallization could reduce the contact area and even cause the electrical failure. Modeling results are consistent with the findings in the experimental work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An innovative methodology has been used for the formulation development of Cyclosporine A (CyA) nanoparticles. In the present study the static mixer technique, which is a novel method for producing nanoparticles, was employed. The formulation optimum was calculated by the modified Shepard's method (MSM), an advanced data analysis technique not adopted so far in pharmaceutical applications. Controlled precipitation was achieved injecting the organic CyA solution rapidly into an aqueous protective solution by means of a static mixer. Furthermore the computer based MSM was implemented for data analysis, visualization, and application development. For the optimization studies, the gelatin/lipoid S75 amounts and the organic/aqueous phase were selected as independent variables while the obtained particle size as a dependent variable. The optimum predicted formulation was characterized by cryo-TEM microscopy, particle size measurements, stability, and in vitro release. The produced nanoparticles contain drug in amorphous state and decreased amounts of stabilizing agents. The dissolution rate of the lyophilized powder was significantly enhanced in the first 2 h. MSM was proved capable to interpret in detail and to predict with high accuracy the optimum formulation. The mixer technique was proved capable to develop CyA nanoparticulate formulations.