3 resultados para 797

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of the register insertion protocol for mixed voice-data traffic is investigated by simulation. The simulation model incorporates a common insertion buffer for station and ring packets. Bandwidth allocation is achieved by imposing a queue limit at each node. A simple priority scheme is introduced by allowing the queue limit to vary from node to node. This enables voice traffic to be given priority over data. The effect on performance of various operational and design parameters such as ratio of voice to data traffic, queue limit and voice packet size is investigated. Comparisons are made where possible with related work on other protocols proposed for voice-data integration. The main conclusions are: (a) there is a general degradation of performance as the ratio of voice traffic to data traffic increases, (b) substantial improvement in performance can be achieved by restricting the queue length at data nodes and (c) for a given ring utilisation, smaller voice packets result in lower delays for both voice and data traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses results from a highly interdisciplinary research project which investigated different packaging options for ultra-fine pitch, low temperature and low cost flip-chip assembly. Isotropic Conductive Adhesives (ICAs) are stencil printed to form the interconnects for the package. ICAs are utilized to ensure a low temperature assembly process of flip-chip copper column bumped packages. Results are presented on the structural integrity of novel electroformed stencils. ICA deposits at sub-100 micron pitch and the subsequent thermo-mechanical behaviour of the flip-chip ICA joints are analysed using numerical modelling techniques. Optimal design rules for enhanced performance and thermomechanical reliability of ICA assembled flip-chip packages are formulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.