8 resultados para 4300
em Greenwich Academic Literature Archive - UK
Resumo:
In this article, the buildingEXODUS (V1.1) evacuation model is described and discussed and attempts at qualitative and quantitative model validation are presented. The data set used for the validation is the Tsukuba pavilion evacuation data. This data set is of particular interest as the evacuation was influenced by external conditions, namely inclement weather. As part of the validation exercise, the sensitivity of the buildingEXODUS predictions to a range of variables and conditions is examined, including: exit flow capacity, occupant response times, and the impact of external conditions on the developing evacuation. The buildingEXODUS evacuation model was found to produce good qualitative and quantitative agreement with the experimental data.
Resumo:
This article examines occupant behavior exhibited during evacuation conditions. This is based on a review of a wide range of published literature concerned with evacuation. Factors influencing evacuation performance can be categorized into four broad areas, namely, configurational, environmental, procedural, and, most importantly, behavioral. The contributory factors associated with each of the four influencing categories are examined in detail and it is suggested that these factors should be represented within evacuation models.
Resumo:
Given the importance of occupant behavior on evacuation efficiency, a new behavioral feature has been developed and implemented into buildingEXODUS. This feature concerns the response of occupants to exit selection and re-direction. This behavior is not simply pre-determined by the user as part of the initialization process, but involves the occupant taking decisions based on their previous experiences and the information available to them. This information concerns the occupants prior knowledge of the enclosure and line-of-sight information concerning queues at neighboring exits. This new feature is demonstrated and reviewed through several examples.
Resumo:
An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.
Resumo:
The FIRE Detection and Suppression Simulation (FIREDASS) project was concerned with the development of water misting systems as a possible replacement for halon based fire suppression systems currently used in aircraft cargo holds and ship engine rooms. As part of this program of work, a computational model was developed to assist engineers optimize the design of water mist suppression systems. The model is based on Computational Fluid Dynamics (CFD) and comprised of the following components: fire model; mist model; two-phase radiation model; suppression model; detector/activation model. In this paper the FIREDASS software package is described and the theory behind the fire and radiation sub-models is detailed. The fire model uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation. The radiation model is a six-flux model coupled to the gas (and mist) phase. As part of the FIREDASS project, a detailed series of fire experiments were conducted in order to validate the fire model. Model predictions are compared with data from these experiments and good agreement is found.
Resumo:
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as fire-field modelling. This has traditionally been achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this article we demonstrate how typical office-based PCs attached to a Local Area Network has the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. It was found that good speedups could be achieved on homogeneous networks of PCs, for example a problem composed of ~100,000 cells would run 9.3 times faster on a network of 12 800MHz PCs than on a single 800MHz PC. It was also found that a network of eight 3.2GHz Pentium 4 PCs would run 7.04 times faster than a single 3.2GHz Pentium computer. A dynamic load balancing scheme was also devised to allow the effective use of the software on heterogeneous PC networks. This scheme also ensured that the impact between the parallel processing task and other computer users on the network was minimized.
Resumo:
Two evacuation trials were conducted within Brazilian library facilities by FSEG staff in January 2005. These trials represent one of the first such trials conducted in Brazil. The purpose of these evacuation trials was to collect pre-evacuation time data from a population with a cultural background different to that found in western Europe. In total some 34 pre-evacuation times were collected from the experiments and these ranged from 5 to 98 seconds with a mean pre-evacuation time of 46.7 seconds
Resumo:
This article provides a broad overview of project HEED (High-rise Evacuation Evaluation Database) and the methodologies employed in the collection and storage of first-hand accounts of evacuation experiences derived from face-to-face interviews of evacuees from the World Trade Center (WTC) Twin Towers complex on September 11, 2001. In particular, the article describes the development of the HEED database. This is a flexible research tool which contains qualitative type data in the form of coded evacuee experiences along with the full interview transcripts. The data and information captured and stored in the HEED database is not only unique, but provides a means to address current and emerging issues relating to human factors associated with the evacuation of high-rise buildings