4 resultados para 338-C0021B
em Greenwich Academic Literature Archive - UK
Resumo:
Recently, research has been carried out to test a novel bumping method which omits the under bump metallurgy (UBM) forming process by bonding copper columns directly onto the Al pads of the silicon dies. This bumping method could be adopted to simplify the flip chip assembly process, increase the productivity and achieve a higher I/O count. Computer modelling methods are used to predict the shape of solder joints and response of the flip chip to thermal cyclic loading. The accumulated plastic strain energy at the comer solder joints is used as the damage indicator. Models with a range of design parameters have been compared for their reliability. The ranking of the relative importance of these parameters is given. Results from these analyses are being used by our industrial and academic partners to identify optimal design conditions.
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.
Resumo:
Review of the book 'The Oxford Murders' by Guillermo Martínez (trans. by Sonia Soto), Abacus, 2005, £9.99, pp 208, ISBN 0-349-11721-7