2 resultados para 300105 Applied Hydrology (Drainage, Flooding, Irrigation, Quality, etc.)
em Greenwich Academic Literature Archive - UK
Resumo:
High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air qualityand support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition–resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainlybased on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relativelysimple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.
Resumo:
Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.