12 resultados para 2D elasticity problems

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inverse heat conduction problems (IHCPs) appear in many important scientific and technological fields. Hence analysis, design, implementation and testing of inverse algorithms are also of great scientific and technological interest. The numerical simulation of 2-D and –D inverse (or even direct) problems involves a considerable amount of computation. Therefore, the investigation and exploitation of parallel properties of such algorithms are equally becoming very important. Domain decomposition (DD) methods are widely used to solve large scale engineering problems and to exploit their inherent ability for the solution of such problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares three alternative numerical algorithms applied to a nonlinear metal cutting problem. One algorithm is based on an explicit method and the other two are implicit. Domain decomposition (DD) is used to break the original domain into subdomains, each containing a properly connected, well-formulated and continuous subproblem. The serial version of the explicit algorithm is implemented in FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable, Extensible Toolkit for Scientific Computation) software with in-house software in order to solve the subproblems. The second implicit algorithm is implemented completely within PETSc. PETSc uses MPI as the underlying communication library. Finally, a 2D example is used to test the algorithms and various comparisons are made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper considers a scheduling model that generalizes the well-known open shop, flow shop, and job shop models. For that model, called the super shop, we study the complexity of finding a time-optimal schedule in both preemptive and non-preemptive cases assuming that precedence constraints are imposed over the set of jobs. Two types of precedence rela-tions are considered. Most of the arising problems are proved to be NP-hard, while for some of them polynomial-time algorithms are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-Newton methods are applied to solve interface problems which arise from domain decomposition methods. These interface problems are usually sparse systems of linear or nonlinear equations. We are interested in applying these methods to systems of linear equations where we are not able or willing to calculate the Jacobian matrices as well as to systems of nonlinear equations resulting from nonlinear elliptic problems in the context of domain decomposition. Suitability for parallel implementation of these algorithms on coarse-grained parallel computers is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider two “minimum”NP-hard job shop scheduling problems to minimize the makespan. In one of the problems every job has to be processed on at most two out of three available machines. In the other problem there are two machines, and a job may visit one of the machines twice. For each problem, we define a class of heuristic schedules in which certain subsets of operations are kept as blocks on the corresponding machines. We show that for each problem the value of the makespan of the best schedule in that class cannot be less than 3/2 times the optimal value, and present algorithms that guarantee a worst-case ratio of 3/2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new multi-scale model of brittle fracture growth in an Ag plate with macroscopic dimensions is proposed in which the crack propagation is identified with the stochastic drift-diffusion motion of the crack-tip atom through the material. The model couples molecular dynamics simulations, based on many-body interatomic potentials, with the continuum-based theories of fracture mechanics. The Ito stochastic differential equation is used to advance the tip position on a macroscopic scale before each nano-scale simulation is performed. Well-known crack characteristics, such as the roughening transitions of the crack surfaces, as well as the macroscopic crack trajectories are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.