66 resultados para 280406 Mathematical Software
em Greenwich Academic Literature Archive - UK
Resumo:
Once the preserve of university academics and research laboratories with high-powered and expensive computers, the power of sophisticated mathematical fire models has now arrived on the desk top of the fire safety engineer. It is a revolution made possible by parallel advances in PC technology and fire modelling software. But while the tools have proliferated, there has not been a corresponding transfer of knowledge and understanding of the discipline from expert to general user. It is a serious shortfall of which the lack of suitable engineering courses dealing with the subject is symptomatic, if not the cause. The computational vehicles to run the models and an understanding of fire dynamics are not enough to exploit these sophisticated tools. Too often, they become 'black boxes' producing magic answers in exciting three-dimensional colour graphics and client-satisfying 'virtual reality' imagery. As well as a fundamental understanding of the physics and chemistry of fire, the fire safety engineer must have at least a rudimentary understanding of the theoretical basis supporting fire models to appreciate their limitations and capabilities. The five day short course, "Principles and Practice of Fire Modelling" run by the University of Greenwich attempt to bridge the divide between the expert and the general user, providing them with the expertise they need to understand the results of mathematical fire modelling. The course and associated text book, "Mathematical Modelling of Fire Phenomena" are aimed at students and professionals with a wide and varied background, they offer a friendly guide through the unfamiliar terrain of mathematical modelling. These concepts and techniques are introduced and demonstrated in seminars. Those attending also gain experience in using the methods during "hands-on" tutorial and workshop sessions. On completion of this short course, those participating should: - be familiar with the concept of zone and field modelling; - be familiar with zone and field model assumptions; - have an understanding of the capabilities and limitations of modelling software packages for zone and field modelling; - be able to select and use the most appropriate mathematical software and demonstrate their use in compartment fire applications; and - be able to interpret model predictions. The result is that the fire safety engineer is empowered to realise the full value of mathematical models to help in the prediction of fire development, and to determine the consequences of fire under a variety of conditions. This in turn enables him or her to design and implement safety measures which can potentially control, or at the very least reduce the impact of fire.
Resumo:
The phrase “not much mathematics required” can imply a variety of skill levels. When this phrase is applied to computer scientists, software engineers, and clients in the area of formal specification, the word “much” can be widely misinterpreted with disastrous consequences. A small experiment in reading specifications revealed that students already trained in discrete mathematics and the specification notation performed very poorly; much worse than could reasonably be expected if formal methods proponents are to be believed.
Resumo:
Computer based mathematical models describing aircraft fire have a role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost involved in performing large-scale fire experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be prohibitively high, the development and use of these modelling tools may become essential if these aircraft are to prove a safe and viable reality. By describing the present capabilities and limitations of aircraft fire models, this paper will examine the future development of these models in the areas of large scale applications through parallel computing, combustion modelling and extinguishment modelling.
Resumo:
In the present study, a 3D full cell quarter thermo-electric model of a 500kA demonstration cell has been developed and solved. In parallel, a non-linear wave MHD model of the same 500 kA demonstration cell has been developed and solved. A preliminary study of the impact of the interactions between the cell thermo-electric and MHD models will be presented.
Resumo:
For sensitive optoelectronic components, traditional soldering techniques cannot be used because of their inherent sensitivity to thermal stresses. One such component is the Optoelectronic Butterfly Package which houses a laser diode chip aligned to a fibre-optic cable. Even sub-micron misalignment of the fibre optic and laser diode chip can significantly reduce the performance of the device. The high cost of each unit requires that the number of damaged components, via the laser soldering process, are kept to a minimum. Mathematical modelling is undertaken to better understand the laser soldering process and to optimize operational parameters such as solder paste volume, copper pad dimensions, laser solder times for each joint, laser intensity and absorption coefficient. Validation of the model against experimental data will be completed, and will lead to an optimization of the assembly process, through an iterative modelling cycle. This will ultimately reduce costs, improve the process development time and increase consistency in the laser soldering process.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.
Resumo:
In the analysis of industrial processes, there is an increasing emphasis on systems governed by interacting continuum phenomena. Mathematical models of such multi-physics processes can only be achieved for practical simulations through computational solution procedures—computational mechanics. Examples of such multi-physics systems in the context of metals processing are used to explore some of the key issues. Finite-volume methods on unstructured meshes are proposed as a means to achieve efficient rapid solutions to such systems. Issues associated with the software design, the exploitation of high performance computers, and the concept of the virtual computational-mechanics modelling laboratory are also addressed in this context.
Resumo:
Computer based mathematical models describing the aircraft evacuation process and aircraft fire have a role to play in the design and development of safer aircraft, in the implementaion of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost and risk involved in performing large-scale fire/evacuation experiments for the next generation 'Very Large Aircraft' (VLA) are expected to be high, the development and use of these modelling tools may become essential if these aircraft are to prove a viable reality. By describing the present capabililties and limitations of the EXODUS evacuation model and associated fire models, this paper will examine the future development and data requirements of these models.
Resumo:
The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.
Resumo:
It is well known that during alloy solidification, convection currents close to the so-lidification front have an influence on the structure of dendrites, the local solute concentration, the pattern of solid segregation, and eventually the microstructure of the casting and hence its mechanical properties. Controlled stirring of the melt in continuous casting or in ingot solidification is thought to have a beneficial effect. Free convection currents occur naturally due to temperature differences in the melt and for any given configuration, their strength is a function of the degree of superheat present. A more controlled forced convection current can be induced using electro-magnetic stirring. The authors have applied their Control-Volume based MHD method [1, 2] to the problem of tin solidification in an annular crucible with a water-cooled inner wall and a resistance heated outer one, for both free and forced convection situations and for various degrees of superheat. This problem was studied experimentally by Vives and Perry [3] who obtained temperature measurements, front positions and maps of electro-magnetic body force for a range of superheat values. The results of the mathematical model are compared critically against the experimental ones, in order to validate the model and also to demonstrate the usefulness of the coupled solution technique followed, as a predictive tool and a design aid. Figs 6, refs 19.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria, cabin crew training and in post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. In this paper the capabilities and limitations of the airEXODUS evacuation model are described. Its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described. Finally, the data requiremnets of the airEXODUS evacuation model is discussed along with several projects currently underway at the the Univesity of Greenwich designed to obtain this data. Included in this discussion is a description of the AASK - Aircraft Accident Statistics and Knowledge - data base which contains detailed information from aircraft accident survivors.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in cabin crew training and post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation `Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
A brief description of a software environment in FORTRAN77 for the modelling of multi-physics phenomena is given. The numerical approach is based on finite volume methods but extended to unstructured meshes (ie. FV-UM). A range of interacting solution procedures for turbulent fluid flow, heat transfer with solidification/melting and elasto-visco-plastic solid mechanics are implemented in the first version of PHYSICA, which will be released in source code form to the academic community in late 1995.