6 resultados para 1519

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a methodology for the application of computer simulation to the evacuation certification of aircraft is suggested. The methodology suggested here involves the use of computer simulation, historic certification data, component testing and full-scale certification trials. The proposed methodology sets out a protocol for how computer simulation should be undertaken in a certification environment and draws on experience from both the marine and building industries. Along with the suggested protocol, a phased introduction of computer models to certification is suggested. Given the sceptical nature of the aviation community regarding any certification methodology change in general, this would involve as a first step the use of computer simulation in conjunction with full-scale testing. The computer model would be used to reproduce a probability distribution of likely aircraft performance under current certification conditions and in addition, several other more challenging scenarios could be developed. The combination of full-scale trial, computer simulation (and if necessary component testing) would provide better insight into the actual performance capabilities of the aircraft by generating a performance probability distribution or performance envelope rather than a single datum. Once further confidence in the technique is established, the second step would only involve computer simulation and component testing. This would only be contemplated after sufficient experience and confidence in the use of computer models have been developed. The third step in the adoption of computer simulation for certification would involve the introduction of several scenarios based on for example exit availability instructed by accident analysis. The final step would be the introduction of more realistic accident scenarios into the certification process. This would require the continued development of aircraft evacuation modelling technology to include additional behavioural features common in real accident scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on research work undertaken for the European Commission funded study GMA2/2000/32039 Very Large Transport Aircraft (VLTA) Emergency Requirements Research Evacuation Study (VERRES). A particular focus was on evacuation issues with a detailed study of evacuation performance using computer models being undertaken as part of Work Package 2. This paper describes this work and investigates the use of internal stairs during evacuation using computer simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on research work undertaken for the European Commission funded study GMA2/2000/32039 Very Large Transport Aircraft (VLTA) Emergency Requirements Research Evacuation Study (VERRES). A particular focus of VERRES was on evacuation issues and several large-scale evacuation trials were conducted in the CRANFIELD simulator. This paper addresses part of the research undertaken for Work Package 3 by the University of Greenwich with a focus on the analysis of the data concerning passenger use of stairs and passenger exit hesitation time analysis for upper deck slides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we briefly describe new modelling capabilities within the airEXODUS evacuation model. These new capabilities involve the explicit ability to simulate the interaction of crew with passengers in managing evacuation situations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At 8.18pm on 2 September 1998, Swissair Flight 111 (SR 111), took off from New York’s JFK airport bound for Geneva, Switzerland. Tragically, the MD-11 aircraft never arrived. According to the crash investigation report, published on 27 March 2003, electrical arcing in the ceiling void cabling was the most likely cause of the fire that brought down the aircraft. No one on board was aware of the disaster unfolding in the ceiling of the aircraft and, when a strange odour entered the cockpit, the pilots thought it was a problem with the air-conditioning system. Twenty minutes later, Swissair Flight 111 plunged into the Atlantic Ocean five nautical miles southwest of Peggy’s Cove, Nova Scotia, with the loss of all 229 lives on board. In this paper, the Computational Fluid Dynamics (CFD) analysis of the in-flight fire that brought down SR 111 is described. Reconstruction of the wreckage disclosed that the fire pattern was extensive and complex in nature. The fire damage created significant challenges to identify the origin of the fire and to appropriately explain the heat damage observed. The SMARTFIRE CFD software was used to predict the “possible” behaviour of airflow as well as the spread of fire and smoke within SR 111. The main aims of the CFD analysis were to develop a better understanding of the possible effects, or lack thereof, of numerous variables relating to the in-flight fire. Possible fire and smoke spread scenarios were studied to see what the associated outcomes would be. This assisted investigators at Transportation Safety Board (TSB) of Canada, Fire & Explosion Group in assessing fire dynamics for cause and origin determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the AASK database. The AASK database is unique as it is a record of human behaviour during survivable aviation accidents. The AASK database is compiled from interview data compiled by agencies such as the NTSB and the AAIB. The database can be found on the website http://fseg.gre.ac.uk