2 resultados para 1492
em Greenwich Academic Literature Archive - UK
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
The electric current and the associated magnetic field in aluminium electrolysis cells create effects limiting the cell productivity and possibly cause instabilities: surface waving, ‘anode effects’, erosion of pot lining, feed material sedimentation, etc. The instructive analysis is presented via a step by step inclusion of different physical coupling factors affecting the magnetic field, electric current, velocity and wave development in the electrolysis cells. The full time dependent model couples the nonlinear turbulent fluid dynamics and the extended electromagnetic field in the cell, and the whole bus bar circuit with the ferromagnetic effects. Animated examples for the high amperage cells are presented. The theory and numerical model of the electrolysis cell is extended to the cases of variable cell bottom of aluminium layer and the variable thickness of the electrolyte due to the anode non-uniform burn-out process and the presence of the anode channels. The problem of the channel importance is well known Moreau-Evans model) for the stationary interface and the velocity field, and was validated against measurements in commercial cells, particularly with the recently published ‘benchmark’ test for the MHD models of aluminium cells [1]. The presence of electrolyte channels requires also to reconsider the previous magnetohydrodynamic instability theories and the dynamic wave development models. The results indicate the importance of a ‘sloshing’ parametrically excited MHD wave development in the aluminium production cells.