5 resultados para 1460
em Greenwich Academic Literature Archive - UK
Resumo:
Temperature distributions involved in some metal-cutting or surface-milling processes may be obtained by solving a non-linear inverse problem. A two-level concept on parallelism is introduced to compute such temperature distribution. The primary level is based on a problem-partitioning concept driven by the nature and properties of the non-linear inverse problem. Such partitioning results to a coarse-grained parallel algorithm. A simplified 2-D metal-cutting process is used as an example to illustrate the concept. A secondary level exploitation of further parallel properties based on the concept of domain-data parallelism is explained and implemented using MPI. Some experiments were performed on a network of loosely coupled machines consist of SUN Sparc Classic workstations and a network of tightly coupled processors, namely the Origin 2000.
Resumo:
Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.
Resumo:
The so-called dividing instant (DI) problem is an ancient historical puzzle encountered when attempting to represent what happens at the boundary instant which divides two successive states. The specification of such a problem requires a thorough exploration of the primitives of the temporal ontology and the corresponding time structure, as well as the conditions that the resulting temporal models must satisfy. The problem is closely related to the question of how to characterize the relationship between time periods with positive duration and time instants with no duration. It involves the characterization of the ‘closed’ and ‘open’ nature of time intervals, i.e. whether time intervals include their ending points or not. In the domain of artificial intelligence, the DI problem may be treated as an issue of how to represent different assumptions (or hypotheses) about the DI in a consistent way. In this paper, we shall examine various temporal models including those based solely on points, those based solely on intervals and those based on both points and intervals, and point out the corresponding DI problem with regard to each of these temporal models. We shall propose a classification of assumptions about the DI and provide a solution to the corresponding problem.
Resumo:
Solder joints are often the cause of failure in electronic devices, failing due to cyclic creep induced ductile fatigue. This paper will review the modelling methods available to predict the lifetime of SnPb and SnAgCu solder joints under thermo-mechanical cycling conditions such as power cycling, accelerated thermal cycling and isothermal testing, the methods do not apply to other damage mechanisms such as vibration or drop-testing. Analytical methods such as recommended by the IPC are covered, which are simple to use but limited in capability. Finite element modelling methods are reviewed, along with the necessary constitutive laws and fatigue laws for solder, these offer the most accurate predictions at the current time. Research on state-of-the-art damage mechanics methods is also presented, although these have not undergone enough experimental validation to be recommended at present