3 resultados para 13078-031
em Greenwich Academic Literature Archive - UK
Resumo:
The effect of a high electric current density on the interfacial reactions of micro ball grid array solder joints was studied at room temperature and at 150 °C. Four types of phenomena were reported. Along with electromigration-induced interfacial intermetallic compound (IMC) formation, dissolution at the Cu under bump metallization (UBM)/bond pad was also noticed. With a detailed investigation, it was found that the narrow and thin metallization at the component side produced “Joule heating” due to its higher resistance, which in turn was responsible for the rapid dissolution of the Cu UBM/bond pad near to the Cu trace. During an “electromigration test” of a solder joint, the heat generation due to Joule heating and the heat dissipation from the package should be considered carefully. When the heat dissipation fails to compete with the Joule heating, the solder joint melts and molten solder accelerates the interfacial reactions in the solder joint. The presence of a liquid phase was demonstrated from microstructural evidence of solder joints after different current stressing (ranging from 0.3 to 2 A) as well as an in situ observation. Electromigration-induced liquid state diffusion of Cu was found to be responsible for the higher growth rate of the IMC on the anode side.
Resumo:
Guest-host interactions of ibuprofen tromethamine salt (Ibu.T) with native and modified cyclodextrins (CyDs) have been investigated using several techniques, namely phase solubility diagrams (PSDs), proton nuclear magnetic resonance (H-1 NMR), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRPD). scanning-electron microscopy (SEM) and molecular mechanics (MM). From the analysis of PSD data (A(L)-type) it is concluded that the anionic tromethamine salt of ibuprofen (pK(a) = 4.55) forms 1: 1 soluble complexes with all CyDs investigated in buffered water at pH 7.0, while the neutral form of Ibu forms an insoluble complex with beta-CyD (B-S-type) in buffered water at pH 2.0. Ibu.T has a lower tendency to complex with beta-CyD (K-11 = 58 M-1 at pH 7.0) compared with the neutral Ibu (K-11 = 4200 M (1)) in water. Complex formation of Ibu.T with beta-CyD (Delta G degrees = -20.4 kJ/mol) is enthalpy driven (Delta H degrees = -22.9 kJ/mol) and is accompanied by a small unfavorable entropy (Delta S degrees = -8.4 J/mol K) change. H-1 NMR studies and MM computations revealed that, on complexation, the hydrophobic central benzene ring of lbu.T and part of the isobutyl group reside within the beta-CyD cavity leaving the peripheral groups (carboxylate, tromethamine and methyl groups) located near the hydroxyl group networks at either rim of beta-CyD. PSD, H-1 NMR, DSC, FT-IR, XRPD, SEM and MM studies confirmed the formation of Ibu.T/beta-CyD inclusion complex in solution and the solid state. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance. Ex vivo mucoadhesion was assessed using porcine gingival tissue and the peak detachment forces were found to be suitable for a buccal adhesive tablet with a maximum of 1.5N approximately. The effect of formulation composition on the release pattern was also investigated. Most formulations showed theophylline controlled release profiles depended on the grade and polymer ratio. The release mechanisms were found to fit Peppas' kinetic model over a period of 5h. In general the majority of the developed formulations presented suitable adhesion and controlled drug release. Copyright © 2010 Elsevier B.V. All rights reserved.