3 resultados para 1142
em Greenwich Academic Literature Archive - UK
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL heuristic, termed the combined node-exchange composite heuristic (CNCH), is developed first to solve instances of the VRP. A ML version (the ML-CNCH) is then created, using the construction and improvement heuristics of the CNCH at each level. Experimentation is used to find a suitable combination, which extends the global view of these heuristics. Results comparing both SL and ML are presented.
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables.