8 resultados para 10 Technology
em Greenwich Academic Literature Archive - UK
Resumo:
This paper describes modelling technology and its use in providing data governing the assembly of flip-chip components. Details are given on the reflow and curing stages as well as the prediction of solder joint shapes. The reflow process involves the attachment of a die to a board via solder joints. After a reflow process, underfill material is placed between the die and the substrate where it is heated and cured. Upon cooling the thermal mismatch between the die, underfill, solder bumps, and substrate will result in a nonuniform deformation profile across the assembly and hence stress. Shape predictions then thermal solidification and stress prediction are undertaken on solder joints during the reflow process. Both thermal and stress calculations are undertaken to predict phenomena occurring during the curing of the underfill material. These stresses may result in delamination between the underfill and its surrounding materials leading to a subsequent reduction in component performance and lifetime. Comparisons between simulations and experiments for die curvature will be given for the reflow and curing process
Resumo:
This paper studies the problem of scheduling jobs in a two-machine open shop to minimize the makespan. Jobs are grouped into batches and are processed without preemption. A batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. For this NP-hard problem, we propose a linear-time heuristic algorithm that creates a group technology schedule, in which no batch is split into sub-batches. We demonstrate that our heuristic is a -approximation algorithm. Moreover, we show that no group technology algorithm can guarantee a worst-case performance ratio less than 5/4.
Resumo:
Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved
Resumo:
Purpose – To present key challenges associated with the evolution of system-in-package technologies and present technical work in reliability modeling and embedded test that contributes to these challenges. Design/methodology/approach – Key challenges have been identified from the electronics and integrated MEMS industrial sectors. Solutions to optimising the reliability of a typical assembly process and reducing the cost of production test have been studied through simulation and modelling studies based on technology data released by NXP and in collaboration with EDA tool vendors Coventor and Flomerics. Findings – Characterised models that deliver special and material dependent reliability data that can be used to optimize robustness of SiP assemblies together with results that indicate relative contributions of various structural variables. An initial analytical model for solder ball reliability and a solution for embedding a low cost test for a capacitive RF-MEMS switch identified as an SiP component presenting a key test challenge. Research limitations/implications – Results will contribute to the further development of NXP wafer level system-in-package technology. Limitations are that feedback on the implementation of recommendations and the physical characterisation of the embedded test solution. Originality/value – Both the methodology and associated studies on the structural reliability of an industrial SiP technology are unique. The analytical model for solder ball life is new as is the embedded test solution for the RF-MEMS switch.
Resumo:
Using thermosetting epoxy based conductive adhesive films for the flip chip interconnect possess a great deal of attractions to the electronics manufacturing industries due to the ever increasing demands for miniaturized electronic products. Adhesive manufacturers have taken many attempts over the last decade to produce a number of types of adhesives and the coupled anisotropic conductive-nonconductive adhesive film is one of them. The successful formation of the flip chip interconnection using this particular type of adhesive depends on, among factors, how the physical properties of the adhesive changes during the bonding process. Experimental measurements of the temperature in the adhesive have revealed that the temperature becomes very close to the required maximum bonding temperature within the first 1s of the bonding time. The higher the bonding temperature the faster the ramp up of temperature is. A dynamic mechanical analysis (DMA) has been carried out to investigate the nature of the changes of the physical properties of the coupled anisotropic conductive-nonconductive adhesive film for a range of bonding parameters. Adhesive samples that are pre-cured at 170, 190 and 210°C for 3, 5 and 10s have been analyzed using a DMA instrument. The results have revealed that the glass transition temperature of this type of adhesive increases with the increase in the bonding time for the bonding temperatures that have been used in this work. For the curing time of 3 and 5s, the maximum glass transition temperature increases with the increase in the bonding temperature, but for the curing time of 10s the maximum glass transition temperature has been observed in the sample which is cured at 190°C. Based on these results it has been concluded that the optimal bonding temperature and time for this kind of adhesive are 190°C and 10s, respectively.
Resumo:
EPM seems to have good prospects for the future not only in the materials processing but also in environmental technologies by the help of superior features like contactless processing, clean heating and melting, and good controllability. In the present paper, the authors commentate on the possibility of EPM to avoid environmental issues of energy, resources and hazardous wastes by the use of the functions of Lorentz force and Joule heating. Firstly, the present situation and future trend of electric power generation is outlined, and then some examples of the application of EPM to environmental technologies are introduced, which have been performed by the author’s group. Examples are as follows: production of spherical solar cell from a liquid jet by using intermittent electromagnetic force; fabrication of semi-solid Al-Si slurry for die-casting of vehicle-parts to reduce the weight of vehicle; electromagnetic separation of nonmetallic inclusions from liquid Al scrap and its application to the fabrication of partially particle-reinforced aluminum alloy; electromagnetic melting of hazardous wastes from power plants to stabilize wastes in glass state.
Resumo:
Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.
Resumo:
This is a report on the 7th Annual Congress of International Drug Discovery Science and Technology held in Shanghai, China from 22–25 October, 2009. The conference, organized by BIT Life Sciences, comprised several parallel sessions, keynote presentations and a selection of selection of 20-minute presentations covering a range of therapeutic areas, including general medicinal chemistry, oncology, inflammation, receptors and ion channels, drug, metabolism and pharmokinetics, and fragment-based drug discovery. There were also sessions devoted to genomics, biomarkers, immunology, cell biology, molecular imaging and biochips. Supported by an exhibition of services/products and posters, the conference underlined the marked presence of Asian CROs.