3 resultados para 091007 Manufacturing Robotics and Mechatronics (excl. Automotive Mechatronics)

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a framework to integrate requirements management and design knowledge reuse. The research approach begins with a literature review in design reuse and requirements management to identify appropriate methods within each domain. A framework is proposed based on the identified requirements. The framework is then demonstrated using a case study example: vacuum pump design. Requirements are presented as a component of the integrated design knowledge framework. The proposed framework enables the application of requirements management as a dynamic process, including capture, analysis and recording of requirements. It takes account of the evolving requirements and the dynamic nature of the interaction between requirements and product structure through the various stages of product development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper identifies the need for a verification methodology for manufacturing knowledge in design support systems; and proposes a suitable methodology based on the concept of ontological commitment and the PSL ontology (ISO/CD18629). The use of the verification procedures within an overall system development methodology is examined, and an understanding of how various categories of manufacturing knowledge (typical to design support systems) map onto the PSL ontology is developed. This work is also supported by case study material from industrial situations, including the casting and machining of metallic components. The PSL ontology was found to support the verification of most categories of manufacturing knowledge, and was shown to be particularly suited to process planning representations. Additional concepts and verification procedures were however needed to verify relationships between products and manufacturing processes. Suitable representational concepts and verification procedures were therefore developed, and integrated into the proposed knowledge verification methodology.