3 resultados para (Gas-liquid) partition coefficients

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micelle/water partition coefficients for three dialkyl phthalate esters - dimethyl phthalate ester (DMP), diethyl phthalate ester (DEP) and dipropyl phthalate ester (DPP) were obtained by micellar liquid chromatography (MLC). Experiments were conducted over a temperature range which led to calculation of a Gibbs free energy, enthalpy and entropy of transfer for the phthalate esters. In addition, small angle neutron scattering (SANS) experiments were conducted with no substantial change observed in micelle size before and after phthalate ester incorporation. Overall, a novel method for obtaining thermodynamic information, based on partitioning data, has been developed for dialkyl phthalate esters using micellar liquid chromatography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mixed Lagrangian-Eulerian model of a Water Curtain barrier is presented. The heat, mass and momentum processes are modelled in a Lagrangian framework for the dispersed phase and in an Eulerian framework for the carrier phase. The derivation of the coupling source terms is illustrated with reference to a given carrier phase cell. The turbulent character of the flow is treated with a single equation model, modified to directly account for the influence of the particles on the flow. The model is implemented in the form of a 2 D incompressible Navier Stokes solver, coupled to an adaptive Rung Kutta method for the Lagrangian sub-system. Simulations of a free standing full cone water spray show satisfactory agreement with experiment. Predictions of a Water Curtain barrier impacted by a cold gas cloud point to markedly different flow fields for the upward and downward configurations, which could influence the effectiveness of chemical absorption in the liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal powder in the range of 10-100 microns is widely employed in the production of Raney nickel type catalysts for hydrogenation reactions and hydrogen fuel cell manufacture. In this presentation we examine the modelling of powder production in a gas atomisation vessel using CFD techniques. In a fully coupled Lagrangian-Eulerian two phase scheme, liquid meal particles are tracked through the vessel following atomisation of a liquid nickel-aluminium stream. There is full momentum, heat and turbulence transport between particles and surrounding argon gas and the model predicts the position of solidification depending on particle size and undercooled condition. Maps of collision probability of particles at different stages of solidification are computed, to predict the creation of satellite defects, or to initiate solidification of undercooled droplets. The model is used to support experimental work conducted under the ESA/EU project IMPRESS.