77 resultados para Plumes (Fluid dynamics)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unstructured mesh codes for modelling continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Parallelisation of such codes using single Program Multi Data (SPMD) domain decomposition techniques implemented with message passing has been demonstrated to provide high parallel efficiency, scalability to large numbers of processors P and portability across a wide range of parallel platforms. High efficiency, especially for large P requires that load balance is achieved in each parallel loop. For a code in which loops span a variety of mesh entity types, for example, elements, faces and vertices, some compromise is required between load balance for each entity type and the quantity of inter-processor communication required to satisfy data dependence between processors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes two new techniques designed to enhance the performance of fire field modelling software. The two techniques are "group solvers" and automated dynamic control of the solution process, both of which are currently under development within the SMARTFIRE Computational Fluid Dynamics environment. The "group solver" is a derivation of common solver techniques used to obtain numerical solutions to the algebraic equations associated with fire field modelling. The purpose of "group solvers" is to reduce the computational overheads associated with traditional numerical solvers typically used in fire field modelling applications. In an example, discussed in this paper, the group solver is shown to provide a 37% saving in computational time compared with a traditional solver. The second technique is the automated dynamic control of the solution process, which is achieved through the use of artificial intelligence techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxation using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate the potential for enhanced solution reliability due to obtaining acceptable convergence within each time step, unlike some of the comparison simulations.