95 resultados para Packaging.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dual-section variable frequency microwave systems enable rapid, controllable heating of materials within an individual surface mount component in a chip-on=board assembly. The ability to process devices individually allows components with disparate processing requirements to be mounted on the same assembly. The temperature profile induced by the microwave system can be specifically tailored to the needs of the component, allowing optimisation and degree of cure whilst minimising thermomechanical stresses. This paper presents a review of dual-section microwave technology and its application to curing of thermosetting polymer materials in microelectronics applications. Curing processes using both conventional and microwave technologies are assessed and compared. Results indicate that dual-section microwave systems are able to cure individual surface mount packages in a significantly shorter time, at the expense of an increase in thermomechanical stresses and a greater variation in degree of cure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and growth of intermetallic compound layer thickness is one of the important issues in search for reliable electronic and electrical connections. Intermetallic compounds (IMCs) are an essential part of solder joints. At low levels, they have a strengthening effect on the joint; but at higher levels, they tend to make solder joints more brittle. If the solder joint is subjected to long-standing exposure of high temperature, this could result in continuous growth of intermetallic compound layer. The brittle intermetallic compound layer formed in this way is very much prone to fracture and cold therefore lead to mechanical and electrical failure of the joint. Therefore, the primary aim of this study is to investigate the growth of intermetallic compound layer thickness subjected to five different reflow profiles. The study also looks at the effect of three different temperature cycles (with maximum cycle temperature of 25 0C, 40 0C and 60 0C) on intermetallic compound formation and their growth behaviour.. Two different Sn-Ag-Cu solder pastes (namely paste P1 and paste P2) which were different in flux medium, were used for the study. The result showed that the growth of intermetallic compound layer thickness was a function of ageing temperature. It was found that the rate of growth of intermetallic compound layer thickness of paste P1 was higher than paste P2 at the same temperature condition. This behaviour could be related to the differences in flux mediums of solder paste samples used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stencil printing process is an important process in the assembly of Surface Mount Technology (SMT)devices. There is a wide agreement in the industry that the paste printing process accounts for the majority of assembly defects. Experience with this process has shown that typically over 60% of all soldering defects are due to problems associated with the flow properties of solder pastes. Therefore, the rheological measurements can be used as a tool to study the deformation or flow experienced by the pastes during the stencil printing process. This paper presents results on the thixotropic behaviour of three pastes; lead-based solder paste, lead-free solder paste and isotropic conductive adhesive (ICA). These materials are widely used as interconnect medium in the electronics industry. Solder paste are metal alloys suspended in a flux medium while the ICAs consist of silver flakes dispersed in an epoxy resin. The thixotropy behaviour was investigated through two rheological test; (i) hysteresis loop test and (ii) steady shear rate test. In the hysteresis loop test, the shear rate were increased from 0.001 to 100s-1 and then decreased from 100 to 0.001s-1. Meanwhile, in the steady shear rate test, the materials were subjected to a constant shear rate of 0.100, 100 and 0.001s-1 for a period of 240 seconds. All the pastes showed a high degree of shear thinning behaviour with time. This might be due to the agglomeration of particles in the flux or epoxy resin that prohibits pastes flow under low shear rate. The action of high shear rate would break the agglomerates into smaller pieces which facilitates the flow of pastes, thus viscosity is reduced at high shear rate. The solder pastes exhibited a higher degree of structural breakdown compared to the ICAs. The area between the up curve and down curve in the hysteresis curve is an indication of the thixotropic behavior of the pastes. Among the three pastes, lead-free solder paste showed the largest area between the down curve and up curve, which indicating a larger structural breakdown in the pastes, followed by lead-based solder paste and ICA. In a steady shear rate test, viscosity of ICA showed the best recovery with the steeper curve to its original viscosity after the removal of shear, which indicating that the dispersion quality in ICA is good because the high shear has little effect on the microstructure of ICA. In contrast, lead-based paste showed the poorest recovery which means this paste undergo larger structural breakdown and dispersion quality in this paste is poor because the microstructure of the paste is easily disrupted by high shear. The structural breakdown during the application of shear and the recovery after removal of shear is an important characteristic in the paste printing process. If the paste’s viscosity can drop low enough, it may contribute to the aperture filling and quick recovery may prevent slumping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry.These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensure successfulpaste release after the printing process. Wall-slip plays animportant role in characterising the flow behaviour of solderpastes and isotropic conductive adhesives. The study investigates the wall-slip formation in solder paste andisotropic conductive adhesives using flow visualisation technique. The slip distance was measured for parallel plate with different surface roughness in order to quantify the wallslip formations in these paste materials. An ink marker line was drawn between the parallel plate and the free surface of the sample. The parallel was rotated slowly at a constant shear rate of 0.05 sec-1 and the displacement of the ink marker was observed using a video microscope and image capturing software was utilised to capture the displacement of ink marker. From this study, it was found that the wall-slip effect was evident in all the paste materials. In addition, the different surface roughness of the parallel plates did not prevent the formation of wall-slip. This study has revealed that the wallslip effect could used to understand the flow behaviour of the paste in the stencil printing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solder paste is the most widely used bonding material in the assembly of surface mount devices in electronic industries. It generally has a flocculated structure (show aggregation of solder particles), and hence are known to exhibit a thixotropic behavior. This is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this timedependent rheological behaviour of solder pastes is crucial for establishing the relationships between the pastes’ structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a novel method which has been developed for characterising the timedependent and non-Newtonian rheological behaviour of solder pastes as a function of shear rates. The objective of the study reported in this paper is to investigate the thixotropic build-up behaviour of solder pastes. The stretched exponential model(SEM) has been used to model the structural changes during the build-up process and to correlate model parameters with the paste printing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solder paste plays an important role in the electronic assembly process by providing electrical, mechanical and thermal bonding between the components and the substrate. The rheological characterisation of pastes is an important step in the design and development of new paste formulations. With the ever increasing trend of miniaturisation of electronic products, the study of the rheological properties of solder pastes is becoming an integral part in the R&D of new paste formulations and in the quality monitoring and control during paste manufacture and electronic assembly process. This research work outlines some of the novel techniques which can be successfully used to investigate the rheology of leadfree solder pastes. The report also presents the results of the correlation of rheological properties with solder paste printing performance. Four different solder paste samples (namely paste P1, P2, P3 and P4) with different flux vehicle systems and particle size distributions were investigated in the study. As expected, all the paste samples showed shear thinning behaviour. Although the samples displayed similar flow behaviour at high shear rates, differences were observed at low shear rates. In the stencil printing trials, round deposits showed better results than rectangular deposits in terms of paste heights and aperture filling. Our results demonstrate a good correlation between higher paste viscosity and good printing performance. The results of the oscillatory and thixotropy tests were also successfully correlated to the printing behaviour of solder paste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of polymer cure models used in microelectronics packaging applications reveals no clear consensus of the chemical rate constants for the cure reactions, or even of an effective model. The problem lies in the contrast between the actual cure process, which involves a sequence of distinct chemical reactions, and the models, which typically assume only one, (or two with some restrictions on the independence of their characteristic constants.) The standard techniques to determine the model parameters are based on differential scanning calorimetry (DSC), which cannot distinguish between the reactions, and hence yields results useful only under the same conditions, which completely misses the point of modeling. The obvious solution is for manufacturers to provide the modeling parameters, but failing that, an alternative experimental technique is required to determine individual reaction parameters, e.g. Fourier transform infra-red spectroscopy (FTIR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variable Frequency Microwave (VFM) processing of heterogeneous chip-on-board assemblies is assessed using a multiphysics modelling approach. The Frequency Agile Microwave Oven Bonding System (FAMOBS) is capable of rapidly processing individual packages on a Chip-On-Board (COB) assembly. This enables each package to be processed in an optimal manner, with temperature ramp rate, maximum temperature and process duration tailored to the specific package, a significant benefit in assemblies containing disparate package types. Such heterogeneous assemblies may contain components such as large power modules alongside smaller modules containing low thermal budget materials with highly disparate processing requirements. The analysis of two disparate packages has been assessed numerically to determine the applicability of the dual section microwave system to curing heterogeneous devices and to determine the influence of differing processing requirements of optimal process parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of polymer cure models used in microelectronics packaging applications reveals no clear consensus of the chemical rate constants for the cure reactions, or even of an effective model. The problem lies in the contrast between the actual cure process, which involves a sequence of distinct chemical reactions, and the models, which typically assume only one, (or two with some restrictions on the independence of their characteristic constants.) The standard techniques to determine the model parameters are based on differential scanning calorimetry (DSC), which cannot distinguish between the reactions, and hence yields results useful only under the same conditions, which completely misses the point of modeling. The obvious solution is for manufacturers to provide the modeling parameters, but failing that, an alternative experimental technique is required to determine individual reaction parameters, e.g. Fourier transform infra-red spectroscopy (FTIR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermosetting polymer materials are widely utilised in modern microelectronics packaging technology. These materials are used for a number of functions, such as for device bonding, for structural support applications and for physical protection of semiconductor dies. Typically, convection heating systems are used to raise the temperature of the materials to expedite the polymerisation process. The convection cure process has a number of drawbacks including process durations generally in excess of 1 hour and the requirement to heat the entire printed circuit board assembly, inducing thermomechanical stresses which effect device reliability. Microwave energy is able to raise the temperature of materials in a rapid, controlled manner. As the microwave energy penetrates into the polymer materials, the heating can be considered volumetric – i.e. the rate of heating is approximately constant throughout the material. This enables a maximal heating rate far greater than is available with convection oven systems which only raise the surface temperature of the polymer material and rely on thermal conductivity to transfer heat energy into the bulk. The high heating rate, combined with the ability to vary the operating power of the microwave system, enables the extremely rapid cure processes. Microwave curing of a commercially available encapsulation material has been studied experimentally and through use of numerical modelling techniques. The material assessed is Henkel EO-1080, a single component thermosetting epoxy. The producer has suggested three typical convection oven cure options for EO1080: 20 min at 150C or 90 min at 140C or 120 min at 110C. Rapid curing of materials of this type using advanced microwave systems, such as the FAMOBS system [1], is of great interest to microelectronics system manufacturers as it has the potential to reduce manufacturing costs, increase device reliability and enables new device designs. Experimental analysis has demonstrated that, in a realistic chip-on-board encapsulation scenario, the polymer material can be fully cured in approximately one minute. This corresponds to a reduction in cure time of approximately 95 percent relative to the convection oven process. Numerical assessment of the process [2] also suggests that cure times of approximately 70 seconds are feasible whilst indicating that the decrease in process duration comes at the expense of variation in degree of cure within the polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What is it that consumers see when they read the wine label? This article begins from the premise that the label does not merely consist of words that describe the contents of the bottle, but also contains clues to complex social, cultural and economic interactions which bestow wine its meaning. Thus, the visual aspects of wine extend far beyond colour, labelling and packaging. Viewing the wine label through the cultural lens suggests that the label has much to offer the hospitality provider in the ways in which the wine's affective qualities are conveyed. [From the Publisher]