388 resultados para Computer software maintenance
Resumo:
For the numerical solution of the linearized Euler equations, an optimized computational scheme is considered. It is based on fully staggered (in space and time) regular meshes and on a simple mirroring procedure at the stepwise solid walls. There is no need to define ghost points into the solid ohjects that reflect the sound waves. Test results demonstrate the accuracy of the method that may be used for aeroacoustic problems with complex geometries.
Resumo:
Data from three forest sites in Sumatra (Batang Ule, Pasirmayang and Tebopandak) have been analysed and compared for the effects of sample area cut-off, and tree diameter cut-off. An 'extended inverted exponential model' is shown to be well suited to fitting tree-species-area curves. The model yields species carrying capacities of 680 for Batang Ule, 380 species for Pasirmayang, and 35 for Tebopandak (tree diameter >10cm). It would seem that in terms of species carrying capacity, Tebopandak and Pasirmayang are rather similar, and both less diverse than the hilly Batang Ule site. In terms of conservation policy, this would mean that rather more emphasis should be put on conserving hilly sites on a granite substratum. For Pasirmayang with tree diameter >3cm, the asymptotic species number estimate is 567, considerably higher than the estimate of 387 species for trees with diameter >10cm. It is clear that the diameter cut-off has a major impact on the estimate of the species carrying capacity. A conservative estimate of the total number of tree species in the Pasirmayang region is 632 species! In sampling exercises, the diameter cut-off should not be chosen lightly, and it may be worth adopting field sampling procedures which involve some subsampling of the primary sample area, where the diameter cut-off is set much lower than in the primary plots.
Resumo:
Temporal relationships between events and their effects are complex. As the effects of a given event, a proposition may change its truth value immediately after the occurrence of the event and remain true until some other events occur, while another proposition may only become true/false from some time after the causal event has occurred. Expressing delayed effects of events has been a problematic question in most existing theories of action and change. This paper presents a new formalism for representing general temporal causal relationships between events and their effects. It allows expressions of both immediate and delayed effects of events, and supports common-sense assertions such as "effects cannot precede their causes".
Resumo:
Realizing scalable performance on high performance computing systems is not straightforward for single-phenomenon codes (such as computational fluid dynamics [CFD]). This task is magnified considerably when the target software involves the interactions of a range of phenomena that have distinctive solution procedures involving different discretization methods. The problems of addressing the key issues of retaining data integrity and the ordering of the calculation procedures are significant. A strategy for parallelizing this multiphysics family of codes is described for software exploiting finite-volume discretization methods on unstructured meshes using iterative solution procedures. A mesh partitioning-based SPMD approach is used. However, since different variables use distinct discretization schemes, this means that distinct partitions are required; techniques for addressing this issue are described using the mesh-partitioning tool, JOSTLE. In this contribution, the strategy is tested for a variety of test cases under a wide range of conditions (e.g., problem size, number of processors, asynchronous / synchronous communications, etc.) using a variety of strategies for mapping the mesh partition onto the processor topology.
Resumo:
Parallel computing is now widely used in numerical simulation, particularly for application codes based on finite difference and finite element methods. A popular and successful technique employed to parallelize such codes onto large distributed memory systems is to partition the mesh into sub-domains that are then allocated to processors. The code then executes in parallel, using the SPMD methodology, with message passing for inter-processor interactions. In order to improve the parallel efficiency of an imbalanced structured mesh CFD code, a new dynamic load balancing (DLB) strategy has been developed in which the processor partition range limits of just one of the partitioned dimensions uses non-coincidental limits, as opposed to coincidental limits. The ‘local’ partition limit change allows greater flexibility in obtaining a balanced load distribution, as the workload increase, or decrease, on a processor is no longer restricted by the ‘global’ (coincidental) limit change. The automatic implementation of this generic DLB strategy within an existing parallel code is presented in this chapter, along with some preliminary results.
Resumo:
The attachment of electronic components to printed circuit boards using solder material is a complex process. This paper presents a novel modeling methodology, which integrates the governing physics taking place. Multiphysics modeling technology, imbedded into the simulation tool—PHYSICA is used to simulate fluid flow, heat transfer, solidification, and stress evolution in an integrated manner. Results using this code are presented, detailing the mechanical response of two solder materials as they cool, solidify and then deform. The shape that a solder joint takes upon melting is predicted using the SURFACE EVOLVER code. Details are given on how these predictions can be used in the PHYSICA code to provide a modeling route by which the shape, solidification history, and resulting stress profiles can be predicted.
Resumo:
The most common parallelisation strategy for many Computational Mechanics (CM) (typified by Computational Fluid Dynamics (CFD) applications) which use structured meshes, involves a 1D partition based upon slabs of cells. However, many CFD codes employ pipeline operations in their solution procedure. For parallelised versions of such codes to scale well they must employ two (or more) dimensional partitions. This paper describes an algorithmic approach to the multi-dimensional mesh partitioning in code parallelisation, its implementation in a toolkit for almost automatically transforming scalar codes to parallel form, and its testing on a range of ‘real-world’ FORTRAN codes. The concept of multi-dimensional partitioning is straightforward, but non-trivial to represent as a sufficiently generic algorithm so that it can be embedded in a code transformation tool. The results of the tests on fine real-world codes demonstrate clear improvements in parallel performance and scalability (over a 1D partition). This is matched by a huge reduction in the time required to develop the parallel versions when hand coded – from weeks/months down to hours/days.
Resumo:
Procedures are described for solving the equations governing a multi-physics process. Finite volume techniques are used to discretise, using the same unstructured mesh, the equations of fluid flow, heat transfer with solidification, and solid deformation. These discretised equations are then solved in an integrated manner. The computational mechanics environment, PHYSICA, which facilitates the building of multi-physics models, is described. Comparisons between model predictions and experimental data are presented for the casting of metal components.
Resumo:
The micromagnetic structure and energy of 180° domain walls spanning laminar crystals of iron having (100) or (110) surfaces and ranging in thickness from 145 to 580 nm have been investigated by numerical integration of the Landau-Lifshitz-Gilbert equation. Stable equilibrium structures with two flux symmetries were obtained for both crystal orientations at all thicknesses studied.
Resumo:
In semilevitation melting, a cylindrical metal ingot is melted by a coaxial a.c. induction coil. A watercooled solid base supports the ingot, while the top and side free surface is confined by the magnetic forces as the melting front progresses. The dynamic interplay between gravity, hydrodynamic stress, and the Lorentz force in the fluid determines the instantaneous free surface shape. The coupled nonstationary equations for turbulent flow, heat with phase change, and high-frequency electromagnetic field are solved numerically for the axisymmetric time-dependent domain by a continuous mesh transformation, using a pseudospectral method. Results are obtained for the two actually existing coil configurations and several validation cases.
Resumo:
Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
A modeling strategy is presented to solve the governing equations of fluid flow, temperature (with solidification), and stress in an integrated manner. These equations are discretized using finite volume methods on unstructured grids, which provide the capability to represent complex domains. Both the cell-centered and vertex-based forms of the finite volume discretization procedure are explained, and the overall integrated solution procedure using these techniques with suitable solvers is detailed. Two industrial processes, based on the casting of metals, are used to demonstrate the capabilities of the resultant modeling framework. This manufacturing process requires a high degree of coupling between the governing physical equations to accurately predict potential defects. Comparisons between model predictions and experimental observations are given.
Resumo:
The rotating-frame nuclear magnetic relaxation rate of spins diffusing on a disordered lattice has been calculated by Monte Carlo methods. The disorder includes not only variation in the distances between neighbouring spin sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent spin correlation functions which translate into asymmetry in the characteristic peak in the temperature dependence of the dipolar relaxation rate. The results may be used to deduce the average hopping rate from the relaxation but the effect is not sufficiently marked to enable the distribution of the hopping rates to be evaluated. The distribution, which is a measure of the degree of disorder, is the more interesting feature and it has been possible to show from the calculation that measurements of the relaxation rate as a function of the strength of the radiofrequency spin-locking magnetic field can lead to an evaluation of its width. Some experimental data on an amorphous metal - hydrogen alloy are reported which demonstrate the feasibility of this novel approach to rotating-frame relaxation in disordered materials.