70 resultados para Bearings (Machinery)
Resumo:
In this paper, the application of a continuum model is presented, which deals with the discharge of multi-component granular mixtures in core flow mode. The full model description is given (including the constitutive models for the segregation mechanism) and the interactions between particles at the microscopic level are parametrised in order to predict the development of stagnant zone boundaries during core flow discharges. Finally, the model is applied to a real industrial problem and predictions are made for the segregation patterns developed during mixture discharge in core flow mode.
Resumo:
Solder constitutive models are important as they are widely used in FEA simulations to predict the lifetime of soldered assemblies. This paper briefly reviews some common constitutive laws to capture creep in solder and presents work on laws capturing both kinematic hardening and damage. Inverse analysis is used to determine constants for the kinematic hardening law which match experimental creep curves. The mesh dependence of the damage law is overcome by using volume averaging and is applied to predict the crack path in a thermal cycled resistor component
Resumo:
The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation
Resumo:
In this paper, we address the use of CBR in collaboration with numerical engineering models. This collaborative combination has a particular application in engineering domains where numerical models are used. We term this domain “Case Based Engineering” (CBE), and present the general architecture of a CBE system. We define and discuss the general characteristics of CBE and the special problems which arise. These are: the handling of engineering constraints of both continuous and nominal kind; interpolation over both continuous and nominal variables, and conformability for interpolation. In order to illustrate the utility of the method proposed, and to provide practical examples of the general theory, the paper describes a practical application of the CBE architecture, known as CBE-CONVEYOR, which has been implemented by the authors.Pneumatic conveying is an important transportation technology in the solid bulks conveying industry. One of the major industry concerns is the attrition of powders and granules during pneumatic conveying. To minimize the fraction of particles during pneumatic conveying, engineers want to know what design parameters they should use in building a conveyor system. To do this, engineers often run simulations in a repetitive manner to find appropriate input parameters. CBE-Conveyor is shown to speed up conventional methods for searching for solutions, and to solve problems directly that would otherwise require considerable intervention from the engineer.
Resumo:
In this study, a simplified Acoustic Emission (AE) equipment, in essence an AE signal conditioner and a USB (Universal Serial Bus) data acquisition system, is used to study what happens in paper structures during mechanical loading. By the use of such equipment, some parameters that can be extracted are e.g. the stress and strain at onset of AE, the stress and strain at the onset of rapid AE defined as some numerical factor (larger then one) times the initial emission rate, the emission rate at the first stage of loading and the stress and strain at final failure i.e. when the specimen loses its load carrying ability.In this study however, the interest is focused on one particular parameter i.e. the elastic strain energy density W c at onset of AE. This is a parameter with a clear physical meaning and in this study, the correlation between this parameter and a fracture toughness measure, is investigated.The conclusion is that when nine different paper materials (with a large span regarding properties) are considered, there is a correlation (however not linear) between these two parameters.
Resumo:
Accurate design of two-phase air-solid pipelines requires data from flow and pressure measurements, requiring the appropriate positioning and selection of sensors as well as judicious processing of signals. This paper shows how detailed measurements of pressure profiles have been obtained for use in design of improved pneumatic conveying pipelines.
Resumo:
A new technique for mode shape expansion in structural dynamic applications is presented based on the perturbed force vector approach. The proposed technique can directly adopt the measured incomplete modal data and include the effect of the perturbation between the analytical and test models. The results show that the proposed technique can provide very accurate expanded mode shapes, especially in cases when significant modelling error exists in the analytical model and limited measurements are available.
Resumo:
The stress singularities at the tip of a crack that terminates at a frictional interface between two layers in anisotropic composites are investigated. The order of stress singularities is determined by solving the characteristic equations obtained from the boundary conditions and the frictional interface conditions for the cases concerned. The interface is assumed to be governed by Coulomb's law of friction. Numerical results are presented for the cases with a crack terminating at a frictional interface of a fibre reinforced composite, and it is shown that there is a big difference of stress singularities between cases with and without considering friction along the interface.
Resumo:
Product knowledge support needs are compared in two companies with different production volumes and product complexity. Knowledge support requirements identified include: function, performance data, requirements data, common parts, regulatory guidelines and layout data. A process based data driven knowledge reuse method is evaluated in light of the identified product knowledge needs. The evaluation takes place through developing a pilot case with each company. It is found that the method provides more benefit to the high complexity design domain, in which a significant amount of work takes place at the conceptual design stages, relying on a conceptual product representation. There is not such a clear value proposition in a design environment whose main challenge is layout design and the application of standard parts and features. The method supports the requirement for conceptual product representation but does not fully support a standard parts library.