73 resultados para Graders (Earthmoving machinery)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-stage assembly scheduling problem is a model for production processes that involve the assembly of final or intermediate products from basic components. In our model, there are m machines at the first stage that work in parallel, and each produces a component of a job. When all components of a job are ready, an assembly machine at the second stage completes the job by assembling the components. We study problems with the objective of minimizing the makespan, under two different types of batching that occur in some manufacturing environments. For one type, the time to process a batch on a machine is equal to the maximum of the processing times of its operations. For the other type, the batch processing time is defined as the sum of the processing times of its operations, and a setup time is required on a machine before each batch. For both models, we assume a batch availability policy, i.e., the completion times of the operations in a batch are defined to be equal to the batch completion time. We provide a fairly comprehensive complexity classification of the problems under the first type of batching, and we present a heuristic and its worst-case analysis under the second type of batching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first phase in the sign, development and implementation of a comprehensive computational model of a copper stockpile leach process is presented. The model accounts for transport phenomena through the stockpile, reaction kinetics for the important mineral species, oxgen and bacterial effects on the leach reactions, plus heat, energy and acid balances for the overall leach process. The paper describes the formulation of the leach process model and its implementation in PHYSICA+, a computational fluid dynamic (CFD) software environment. The model draws on a number of phenomena to represent the competing physical and chemical features active in the process model. The phenomena are essentially represented by a three-phased (solid liquid gas) multi-component transport system; novel algorithms and procedures are required to solve the model equations, including a methodology for dealing with multiple chemical species with different reaction rates in ore represented by multiple particle size fractions. Some initial validation results and application simulations are shown to illustrate the potential of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Acoustic Emission Testing (AET) to determine the onset of paper damage will be demonstrated on tensile coupons made from mechanical pulp. This technique is part of an EU funded project named the Fifth Frame Program. Its aim is to develop methods for determining specific damage mechanisms through AET. Various such techniques of damage detection will be demonstrated in the coming work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper, a 2-D non-linear electric arc-welding problem is considered. It is assumed that the moving arc generates an unknown quantity of energy which makes the problem an inverse problem with an unknown source. Robust algorithms to solve such problems e#ciently, and in certain circumstances in real-time, are of great technological and industrial interest. There are other types of inverse problems which involve inverse determination of heat conductivity or material properties [CDJ63][TE98], inverse problems in material cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in the metal cutting problem, the temperature of a very hot surface is required and it relies on the use of thermocouples. Here, the solution scheme requires temperature measurements lied in the neighbourhood of the weld line in order to retrieve the unknown heat source. The size of this neighbourhood is not considered in this paper, but rather a domain decomposition concept is presented and an examination of the accuracy of the retrieved source are presented. This paper is organised as follows. The inverse problem is formulated and a method for the source retrieval is presented in the second section. The source retrieval method is based on an extension of the 1-D source retrieval method as proposed in [ILP].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational analysis software is now widely accepted as a key industrial tool for plant design and process analysis. This is due in part to increased accuracy in the models, larger and faster computer systems and better graphical interfaces that allow easy use of the technology by engineers. The use of computational modelling to test new ideas and analyse current processes helps to take the guesswork out of industrial process design and offers attractive cost savings. An overview of computer-based modelling techniques as applied to the materials processing industry is presented and examples of their application are provided in the contexts of the mixing and refining of lead bullion and the manufacture of lead ingots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the effects of the solder reflow process on the reliability of anisotropic conductive film (ACF) interconnections for flip chip on flex (FCOF) applications are investigated. Experiments as well as computer modeling methods have been used. In the experiments, it was found that the contact resistance of ACF joints increased after the subsequent reflow process, and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. Nearly 40% of the joints were opened (i.e. lifted away from the pad) after the reflow process with 260 °C peak temperature while no opening was observed when the peak temperature was 210 °C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. It was also found that the ACF joints after the reflow process with 210 °C peak temperature showed a high ability to resist water absorption under steady state 85 °C/85%RH conditions, probably because the curing degree of the ACF was improved during the reflow process. To give a good understanding, a 3D model of an ACF joint structure was built and finite element analysis was used to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compuational fluid dynamics (CFD) is used to help understand the gas flow characteristics in the wave soldering process. CFD has the ability to calculate (1) heal transfer, (2) fluid dynamics, and (3) oxygen concentration throughout the wave soldering machine. Understanding the impact of fluid dynamics on oxygen concentration is important as excessive oxygen at the solder bath can lead to high dross contents and hence poor solder joint quality on the printed circuit board. This paper describes the CFD modelling approach and illustrates its capability for a machine which has nitrogen injectors near the solder bath. Different magnitiutes of nitrogen flow rates are investigated and it is demonstrated how these effect the oxygen concentration at the bath surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260°C, while there is no opening when the peak temperature is 210°C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.