36 resultados para Liquid-Solid Flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical model for electrically conducting liquid droplets levitated in AC magnetic field is applied to demonstrate various factors affecting the accuracy of material property value measurements in microgravity conditions. The included effects are the electromagnetic force induced stirring and the resulting turbulence, the thermo-capillary convection, and the droplet rotation. The results are validated against available analytical solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pneumatic conveying of powder and granular material involve the mixed flow of solid particles in air. Characterisation of solid/gas flow regimes is important for the design, operation and control of plants involving such two-phase processes. This paper describes preliminary studies directed at identifying flow regimes in solid/gas flows by analysis of the process `noise' signals from a flow transmitter which has a relatively wide frequency response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheological properties of solder pastes are very important for a high quality surface mount technology process. The stencil/screen printing process of solder pastes is one of the most critical steps in the SMT assembly process, as most of the assembly defects can often be shown to originate from paste rheology and associated poor printing performance. This paper concerns an investigation of the effect of solder paste composition on the rheological properties and behaviour of four different solder pastes. We report on the evaluation of three different paste formulations based on the no-clean flux composition, with different alloy composition, metal content and particle size using a range of rheological characterisation techniques - including viscosity measurements, yield stress, oscillatory and creep-recovery tests. Our results show that in the viscosity test, all solder pastes exhibited a shear thinning behaviour in nature with different highest maximum viscosity. In the region of shear thinning behaviour the paste 3 delivered the best results. Viscosity test helps to understand the solid and cohesive behaviour of solder pastes. Good solid and cohesive behaviour indicates a good paste roll and helps to avoid paste bleeding. The yield stress test has been used to study the effect of temperature on the flow behaviour of solder pastes. Yield stress was measured for a range of temperature from 15deg C to 35deg C with an increment of 5degC. The result indicated a decreasing of the yield stress point if the temperature was increased. Paste 4 has shown the minimum dependence on temperature. The oscillatory test has been used to find out the linear visco-elastic range and to study the solid and liquid like behaviours of solder pastes. Paste 1 indicated the biggest linear visco-elastic region (LVR) and the highest value of G' and G" which means solder paste 1 will be needed a higher squeegee pressure in the printing process. In the creep recovery test paste 4 showed the best- - recovery and the lowest values of creep and recovery compliance which indicated a good printing behaviour. The test also has showed the solder paste with smaller particle size exhibit less recovery

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this investigation was to examine the preparation and characterisation of hexane-in-water emulsions stabilised by clay particles. These emulsions, called Pickering emulsions, are characterised by the adsorption of solid particles at the oil/water (o/w) interface. The development of an elastic film at the o/w interface following the adsorption of colloidal particles helps to promote emulsion stability. Three different solid materials were used: silica sand, kaolin, and bentonite. Particles were added to the liquid mixtures in the range of 0.5–10 g dm−3. Emulsions were prepared using o/w ratios of 0.1, 0.2, 0.3, and 0.4. The effect of sodium chloride, on the stability of the prepared emulsions, was assessed in the range of 0–0.5 mol dm−3. In addition the use of a cationic surfactant hexadecyl-trimethylammonium bromide (CTAB) as an aid to improving emulsion stability was assessed in the concentration range of 0–0.05% (w/v). Characterisation of emulsion stability was realised through measurements of rheological properties including non-Newtonian viscosity, the elastic modulus, G', the loss modulus, G", and complex modulus, G*. The stability of the emulsions was evaluated immediately after preparation and 4 weeks later. Using the stability criteria, that for highly stable emulsions: G' > G" and both G' and G" are independent of frequency (varpi) it was concluded that highly stable emulsions could be prepared using a bentonite concentration of 2% (or more); an o/w ratio greater than 0.2; a CTAB concentration of 0.01%; and a salt concentration of 0.05 M or less—though salt was required.