36 resultados para Finite Operator
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
In the scheduling literature, the notion of machine non availability periods is well known, for instance for maintenance. In our case of planning chemical experiments, we have special periods (the week-ends, holidays, vacations) where the chemists are not available. However, human intervention by the chemists is required to handle the starting and termination of the experiments. This gives rise to a new type of scheduling problems, namely problems of finding schedules that respect the operator non availability periods. These problems are analyzed on a single machine with the makespan as criterion. Properties are described and performance ratios are given for list scheduling and other polynomial-time algorithms.
Resumo:
In this paper, a runback water and ice prediction model is extended to anti-icing and thermal de-icing situations. The resulting coupled equations that govern thin-film flow, ice accretion, and heat conduction in the multilayered system substrate-ice-water are solved using an explicit finite volume approach. The procedure is implemented in the three-dimensional icing code ICECREMO2, and both structured and unstructured grids can be considered. Numerical results are presented to compare the present code simulations to some data provided by other ice prediction codes and to show the capabilities of the present numerical tool.
Resumo:
We study information rates of time-varying flat-fading channels (FFC) modeled as finite-state Markov channels (FSMC). FSMCs have two main applications for FFCs: modeling channel error bursts and decoding at the receiver. Our main finding in the first application is that receiver observation noise can more adversely affect higher-order FSMCs than lower-order FSMCs, resulting in lower capacities. This is despite the fact that the underlying higher-order FFC and its corresponding FSMC are more predictable. Numerical analysis shows that at low to medium SNR conditions (SNR lsim 12 dB) and at medium to fast normalized fading rates (0.01 lsim fDT lsim 0.10), FSMC information rates are non-increasing functions of memory order. We conclude that BERs obtained by low-order FSMC modeling can provide optimistic results. To explain the capacity behavior, we present a methodology that enables analytical comparison of FSMC capacities with different memory orders. We establish sufficient conditions that predict higher/lower capacity of a reduced-order FSMC, compared to its original high-order FSMC counterpart. Finally, we investigate the achievable information rates in FSMC-based receivers for FFCs. We observe that high-order FSMC modeling at the receiver side results in a negligible information rate increase for normalized fading rates fDT lsim 0.01.